A185382 Sum_{j=1..n-1} P(n)-P(j), where P(j) = A065091(j) is the j-th odd prime.
0, 2, 6, 18, 26, 46, 58, 86, 134, 152, 212, 256, 280, 332, 416, 506, 538, 640, 712, 750, 870, 954, 1086, 1270, 1366, 1416, 1520, 1574, 1686, 2092, 2212, 2398, 2462, 2792, 2860, 3070, 3286, 3434, 3662, 3896, 3976, 4386, 4470, 4642, 4730, 5270
Offset: 1
Keywords
Examples
a(4)=(11-3)+(11-5)+(11-7)=18.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000 (corrected by Ray Chandler, Jan 19 2019)
Crossrefs
Programs
-
Maple
N:= 1000: # to get terms for all odd primes <= N P:= select(isprime,[seq(2*i+1, i=1..floor((N-1)/2))]): Q:= ListTools[PartialSums](P): seq(n*P[n]-Q[n],n=2..nops(P)); # Robert Israel, Mar 26 2015
-
Mathematica
s[k_] := Prime[k + 1]; p[n_] := Sum[s[k], {k, 1, n}]; c[n_] := n*s[n] - p[n]; Table[c[n], {n, 2, 100}]
-
PARI
A185382(n)=(n-1)*prime(n+1)-sum(k=2,n-1,prime(k)) \\ M. F. Hasler, May 02 2015
Formula
a(n) = (n-1)*A065091(n) - A071148(n-1) = (n-1)*prime(n+1) - sum_{1 < k <= n} prime(k). [Corrected and extended by M. F. Hasler, May 02 2015]
a(n) = Sum_{j=1..n-1} j*A001223(j+1). - Robert Israel, Mar 26 2015
Extensions
Edited and a(1)=0 prefixed by M. F. Hasler, May 02 2015
Comments