cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A206817 Sum_{0

Original entry on oeis.org

1, 10, 73, 520, 3967, 33334, 309661, 3166468, 35416555, 430546642, 5655609529, 79856902816, 1206424711303, 19419937594990, 331860183278677, 6000534640290364, 114462875817046051, 2297294297649673738, 48394006967070653425
Offset: 2

Views

Author

Clark Kimberling, Feb 12 2012

Keywords

Comments

In the following guide to related sequences,
c(n) = Sum_{0
t(n) = Sum_{0
s(k).................c(n)........t(n)
k....................A000217.....A000292
k^2..................A016061.....A004320
k^3..................A206808.....A206809
k^4..................A206810.....A206811
k!...................A206816.....A206817
prime(k).............A152535.....A062020
prime(k+1)...........A185382.....A206803
2^(k-1)..............A000337.....A045618
k(k+1)/2.............A007290.....A034827
k-th quarter-square..A049774.....A206806

Examples

			a(3) = (2-1) + (6-1) + (6-2) = 10.
		

Crossrefs

Programs

  • Mathematica
    s[k_] := k!; t[1] = 0;
    p[n_] := Sum[s[k], {k, 1, n}];
    c[n_] := n*s[n] - p[n];
    t[n_] := t[n - 1] + (n - 1) s[n] - p[n - 1];
    Table[c[n], {n, 2, 32}]          (* A206816 *)
    Flatten[Table[t[n], {n, 2, 20}]] (* A206817 *)
  • PARI
    a(n)=sum(j=1,n,j!*(2*j-n-1)) \\ Charles R Greathouse IV, Oct 11 2015
    
  • PARI
    a(n)=my(t=1); sum(j=1,n,t*=j; t*(2*j-n-1)) \\ Charles R Greathouse IV, Oct 11 2015
  • Sage
    [sum([sum([factorial(k)-factorial(j) for j in range(1,k)]) for k in range(2,n+1)]) for n in range(2,21)] # Danny Rorabaugh, Apr 18 2015
    

Formula

a(n) = a(n-1)+(n-1)s(n)-p(n-1), where s(n) = n! and p(k) = 1!+2!+...+k!.
a(n) = Sum_{k=2..n} A206816(k).

A206809 a(n) = Sum_{0

Original entry on oeis.org

7, 52, 208, 608, 1463, 3080, 5880, 10416, 17391, 27676, 42328, 62608, 89999, 126224, 173264, 233376, 309111, 403332, 519232, 660352, 830599, 1034264, 1276040, 1561040, 1894815, 2283372, 2733192, 3251248, 3845023, 4522528, 5292320
Offset: 2

Author

Clark Kimberling, Feb 15 2012

Keywords

Comments

Partial sums of A206808. For a guide to related sequences, see A206817.

Examples

			a(3) = (8-1) + (27-1) + (27-8) = 52.
a(4) = a(3) + (64-1) + (64-8) + (64-27) = 208.
		

Crossrefs

Programs

  • Mathematica
    s[k_] := k^3; t[1] = 0;
    p[n_] := Sum[s[k], {k, 1, n}];
    c[n_] := n*s[n] - p[n];
    t[n_] := t[n - 1] + (n - 1) s[n] - p[n - 1]
    Table[c[n], {n, 2, 50}]  (* A206808 *)
    Flatten[Table[t[n], {n, 2, 35}]]  (* A206809 *)
  • PARI
    vector(100, n, n*(9*n^4+60*n^3+145*n^2+150*n+56)/60) \\ Colin Barker, Jul 11 2014
    
  • PARI
    Vec(x^2*(x^2+10*x+7)/(x-1)^6 + O(x^100)) \\ Colin Barker, Jul 11 2014
    
  • Sage
    [sum([sum([k^3-j^3 for j in range(1,k)]) for k in range(2,n+1)]) for n in range(2,33)] # Danny Rorabaugh, Apr 18 2015

Formula

a(n) = (n*(-4-15*n-5*n^2+15*n^3+9*n^4))/60. G.f.: x^2*(x^2+10*x+7) / (x-1)^6. - Colin Barker, Jul 11 2014
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Wesley Ivan Hurt, Jul 23 2025
Showing 1-2 of 2 results.