1, 1, 2, 8, 56, 592, 8512, 155584, 3456896, 90501632, 2728876544, 93143809024, 3550380249088, 149488545697792, 6890674623094784, 345131685337530368, 18664673706719019008, 1083931601731053223936, 67278418002152175960064, 4444711314548967826259968
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 56*x^4/4! + 592*x^5/5! + 8512*x^6/6! +...
such that the logarithmic derivative of the e.g.f. equals the Catalan numbers:
log(A(x)) = x + x^2/2 + 2*x^3/3 + 5*x^4/4 + 14*x^5/5 + 42*x^6/6 + 132*x^7/7 + 429*x^8/8 +...+ A000108(n-1)*x^n/n +...
thus A'(x)/A(x) = C(x) where C(x) = 1 + x*C(x)^2.
Also, e.g.f. A(x) satisfies:
A(x) = 1 + x/A(x) + 4*(x/A(x))^2/2! + 32*(x/A(x))^3/3! + 400*(x/A(x))^4/4! + 6912*(x/A(x))^5/5! +...+ (n+1)^(n-2)*2^n*(x/A(x))^n/n! +...
If we form a table of coefficients of x^k/k! in A(x)^n, like so:
[1, 1, 2, 8, 56, 592, 8512, 155584, 3456896, ...];
[1, 2, 6, 28, 200, 2064, 28768, 511424, 11106432, ...];
[1, 3, 12, 66, 504, 5256, 72288, 1259712, 26822016, ...];
[1, 4, 20, 128, 1064, 11488, 158752, 2740480, 57517184, ...];
[1, 5, 30, 220, 2000, 22680, 319600, 5525600, 115094400, ...];
[1, 6, 42, 348, 3456, 41472, 602352, 10533024, 219321216, ...];
[1, 7, 56, 518, 5600, 71344, 1075648, 19176304, 401916032, ...];
[1, 8, 72, 736, 8624, 116736, 1835008, 33554432, 712166016, ...];
[1, 9, 90, 1008, 12744, 183168, 3009312, 56687040, 1224440064, ...]; ...
then the main diagonal equals (n+1)^(n-1) * 2^n for n>=0:
[1, 2, 12, 128, 2000, 41472, 1075648, 33554432, 1224440064, ...].
Note that Sum_{n>=0} (n+1)^(n-2) * 2^n * x^n/n! is an e.g.f. of A127670.
Comments