A277621 Number of pairs (a,b) such that a*b = n! and d(a) = d(b) with d = A000005 and a <= b.
1, 1, 0, 1, 0, 1, 1, 1, 0, 5, 3, 5, 5, 13, 11, 11, 11, 13, 45, 105, 136, 105, 165, 332, 492, 501, 482, 684, 720, 1095, 1656, 3273, 3136, 3901, 4948, 6674, 7641, 15047, 12879, 17217, 38901, 75540, 37743, 73594, 84249, 88592, 207324, 403493, 710536, 922853, 662019
Offset: 0
Keywords
Examples
For n = 9, there are 5 pairs (a,b): (384,945), (420,864), (480,756), (540,672), (560,648)
Links
- Project Euler, Problem 598: Split Divisibilities
Crossrefs
Cf. A000005.
Programs
-
Maple
a:=proc(n) local S,nf,DD,d,dd:with(numtheory): S:=0:nf:=n!:DD:=divisors(nf):dd:=floor(sqrt(nf)): for d in DD while d
-
Mathematica
a[n_] := Length@ Select[ Divisors[n!], # <= n!/# && Equal @@ DivisorSigma[0, {#, n!/#}] &]; a /@ Range[0, 20] (* Giovanni Resta, Apr 11 2017 *)
-
PARI
a(n)=my(c=0); fordiv(n!, a, my(b=n!/a); if(a>b, break); if( numdiv(a) == numdiv(b), c++)); c
Extensions
a(26)-a(50) from Giovanni Resta, Apr 11 2017
Comments