cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 490 results. Next

A101950 Product of A049310 and A007318 as lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, -1, 1, 3, 1, -1, -2, 3, 4, 1, 0, -4, -2, 6, 5, 1, 1, -2, -9, 0, 10, 6, 1, 1, 3, -9, -15, 5, 15, 7, 1, 0, 6, 3, -24, -20, 14, 21, 8, 1, -1, 3, 18, -6, -49, -21, 28, 28, 9, 1, -1, -4, 18, 36, -35, -84, -14, 48, 36, 10, 1, 0, -8, -4, 60, 50, -98, -126, 6, 75, 45, 11, 1, 1, -4, -30, 20, 145, 36, -210
Offset: 0

Views

Author

Paul Barry, Dec 22 2004

Keywords

Comments

A Chebyshev and Pascal product.
Row sums are n+1, diagonal sums the constant sequence 1 resp. A023434(n+1). Riordan array (1/(1-x+x^2),x/(1-x+x^2)).
Apart from signs, identical with A104562.
Subtriangle of the triangle given by [0,1,-1,1,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 27 2010
The Fi1 and Fi2 sums lead to A004525 and the Gi1 sums lead to A077889, see A180662 for the definitions of these triangle sums. - Johannes W. Meijer, Aug 06 2011
Also the convolution triangle of the inverse of 6th cyclotomic polynomial A010892. - Peter Luschny, Oct 08 2022

Examples

			Triangle begins:
   1,
   1, 1,
   0, 2, 1,
  -1, 1, 3, 1,
  -1,-2, 3, 4, 1,
  ...
Triangle [0,1,-1,1,0,0,0,0,...] DELTA [1,0,0,0,0,0,...] begins : 1 ; 0,1 ; 0,1,1 ; 0,0,2,1 ; 0,-1,1,3,1 ; 0,-1,-2,3,4,1 ; ... - _Philippe Deléham_, Jan 27 2010
		

Crossrefs

Programs

  • Maple
    A101950 := proc(n,k) local j,k1: add((-1)^((n-j)/2)*binomial((n+j)/2,j)*(1+(-1)^(n+j))* binomial(j,k)/2, j=0..n) end: seq(seq(A101950(n,k),k=0..n), n=0..11); # Johannes W. Meijer, Aug 06 2011
    # Uses function PMatrix from A357368. Adds a row on top and a column to the left.
    PMatrix(10, n -> [0, 1, 1, 0, -1,-1][irem(n, 6) + 1]); # Peter Luschny, Oct 08 2022
  • Mathematica
    T[0, 0] = 1; T[n_, k_] /; k>n || k<0 = 0; T[n_, k_] := T[n, k] = T[n-1, k-1]+T[n-1, k]-T[n-2, k]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 07 2014, after Philippe Deléham *)

Formula

T(n, k) = Sum_{j=0..n} (-1)^((n-j)/2)*C((n+j)/2,j)*(1+(-1)^(n+j))*C(j,k)/2.
T(0,0) = 1, T(n,k) = 0,if k>n or if k<0, T(n,k) = T(n-1,k-1) + T(n-1,k) - T(n-2,k). - Philippe Deléham, Jan 26 2010
p(n,x) = (x+1)*p(n-1,x)-p(n-2,x) with p(0,x) = 1 and p(1,x) = x+1 [Dias].
G.f.: 1/(1-x-x^2-y*x). - Philippe Deléham, Feb 10 2012
T(n,0) = A010892(n), T(n+1,1) = A099254(n), T(n+2,2) = A128504(n). - Philippe Deléham, Mar 07 2014
T(n,k) = C(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], 4) for n>=1. - Peter Luschny, Apr 25 2016

Extensions

Typo in formula corrected and information added by Johannes W. Meijer, Aug 06 2011

A168561 Riordan array (1/(1-x^2), x/(1-x^2)). Unsigned version of A049310.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 3, 0, 1, 0, 3, 0, 4, 0, 1, 1, 0, 6, 0, 5, 0, 1, 0, 4, 0, 10, 0, 6, 0, 1, 1, 0, 10, 0, 15, 0, 7, 0, 1, 0, 5, 0, 20, 0, 21, 0, 8, 0, 1, 1, 0, 15, 0, 35, 0, 28, 0, 9, 0, 1, 0, 6, 0, 35, 0, 56, 0, 36, 0, 10, 0, 1, 1, 0, 21, 0, 70, 0, 84, 0, 45, 0, 11, 0, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 29 2009

Keywords

Comments

Row sums: A000045(n+1), Fibonacci numbers.
A168561*A007318 = A037027, as lower triangular matrices. Diagonal sums : A077957. - Philippe Deléham, Dec 02 2009
T(n,k) is the number of compositions of n+1 into k+1 odd parts. Example: T(4,2)=3 because we have 5 = 1+1+3 = 1+3+1 = 3+1+1.
Coefficients of monic Fibonacci polynomials (rising powers of x). Ftilde(n, x) = x*Ftilde(n-1, x) + Ftilde(n-2, x), n >=0, Ftilde(-1,x) = 0, Ftilde(0, x) = 1. G.f.: 1/(1 - x*z - z^2). Compare with Chebyshev S-polynomials (A049310). - Wolfdieter Lang, Jul 29 2014

Examples

			The triangle T(n,k) begins:
n\k 0  1   2   3   4    5    6    7    8    9  10  11  12  13 14 15 ...
0:  1
1:  0  1
2:  1  0   1
3:  0  2   0   1
4:  1  0   3   0   1
5:  0  3   0   4   0    1
6:  1  0   6   0   5    0    1
7:  0  4   0  10   0    6    0    1
8:  1  0  10   0  15    0    7    0    1
9:  0  5   0  20   0   21    0    8    0    1
10: 1  0  15   0  35    0   28    0    9    0   1
11: 0  6   0  35   0   56    0   36    0   10   0   1
12: 1  0  21   0  70    0   84    0   45    0  11   0   1
13: 0  7   0  56   0  126    0  120    0   55   0  12   0   1
14: 1  0  28   0 126    0  210    0  165    0  66   0  13   0  1
15: 0  8   0  84   0  252    0  330    0  220   0  78   0  14  0  1
... reformatted by _Wolfdieter Lang_, Jul 29 2014.
------------------------------------------------------------------------
		

Crossrefs

Cf. A162515 (rows reversed), A112552, A102426 (deflated).

Programs

  • Maple
    A168561:=proc(n,k) if n-k mod 2 = 0 then binomial((n+k)/2,k) else 0 fi end proc:
    seq(seq(A168561(n,k),k=0..n),n=0..12) ; # yields sequence in triangular form
  • Mathematica
    Table[If[EvenQ[n + k], Binomial[(n + k)/2, k], 0], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 16 2017 *)
  • PARI
    T(n,k) = if ((n+k) % 2, 0, binomial((n+k)/2,k));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print();); \\ Michel Marcus, Oct 09 2016

Formula

Sum_{k=0..n} T(n,k)*x^k = A059841(n), A000045(n+1), A000129(n+1), A006190(n+1), A001076(n+1), A052918(n), A005668(n+1), A054413(n), A041025(n), A099371(n+1), A041041(n), A049666(n+1), A041061(n), A140455(n+1), A041085(n), A154597(n+1), A041113(n) for x = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 respectively. - Philippe Deléham, Dec 02 2009
T(2n,2k) = A085478(n,k). T(2n+1,2k+1) = A078812(n,k). Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000045(n+1), A006131(n), A015445(n), A168579(n), A122999(n) for x = 0,1,2,3,4,5 respectively. - Philippe Deléham, Dec 02 2009
T(n,k) = binomial((n+k)/2,k) if (n+k) is even; otherwise T(n,k)=0.
G.f.: (1-z^2)/(1-t*z-z^2) if offset is 1.
T(n,k) = T(n-1,k-1) + T(n-2,k), T(0,0) = 1, T(0,1) = 0. - Philippe Deléham, Feb 09 2012
Sum_{k=0..n} T(n,k)^2 = A051286(n). - Philippe Deléham, Feb 09 2012
From R. J. Mathar, Feb 04 2022: (Start)
Sum_{k=0..n} T(n,k)*k = A001629(n+1).
Sum_{k=0..n} T(n,k)*k^2 = 0,1,4,11,... = 2*A055243(n)-A099920(n+1).
Sum_{k=0..n} T(n,k)*k^3 = 0,1,8,29,88,236,... = 12*A055243(n) -6*A001629(n+2) +A001629(n+1)-6*(A001872(n)-2*A001872(n-1)). (End)

Extensions

Typo in name corrected (1(1-x^2) changed to 1/(1-x^2)) by Wolfdieter Lang, Nov 20 2010

A127670 Discriminants of Chebyshev S-polynomials A049310.

Original entry on oeis.org

1, 4, 32, 400, 6912, 153664, 4194304, 136048896, 5120000000, 219503494144, 10567230160896, 564668382613504, 33174037869887488, 2125764000000000000, 147573952589676412928, 11034809241396899282944, 884295678882933431599104, 75613185918270483380568064
Offset: 1

Views

Author

Wolfdieter Lang, Jan 23 2007

Keywords

Comments

a(n-1) is the number of fixed n-cell polycubes that are proper in n-1 dimensions (Barequet et al., 2010).
From Rigoberto Florez, Sep 02 2018: (Start)
a(n-1) is the discriminant of the Morgan-Voyce Fibonacci-type polynomial B(n).
Morgan-Voyce Fibonacci-type polynomials are defined as B(0) = 0, B(1) = 1 and B(n) = (x+2)*B(n-1) - B(n-2) for n > 1.
The absolute value of the discriminant of Fibonacci polynomial F(n) is a(n-1).
Fibonacci polynomials are defined as F(0) = 0, F(1) = 1 and F(n) = x*F(n-1) + F(n-2) for n > 1. (End)
The first 6 values are the dimensions of the polynomial ring in 3n variables xi, yi, zi for 1 <= i <= n modulo the ideal generated by x1^a y1^b z1^c + ... + xn^a yn^b zn^c for 0 < a+b+c <= n (see Fact 2.8.1 in Haiman's paper). - Mike Zabrocki, Dec 31 2019

Examples

			n=3: The zeros are [sqrt(2),0,-sqrt(2)]. The Vn(xn[1],...,xn[n]) matrix is [[1,1,1],[sqrt(2),0,-sqrt(2)],[2,0,2]]. The squared determinant is 32 = a(3). - _Wolfdieter Lang_, Aug 07 2011
		

References

  • Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf.
  • G. Barequet and M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, 31st International Symposium on Computational Geometry (SoCG'15). Editors: Lars Arge and János Pach; pp. 19-22, 2015.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990; p. 219 for T and U polynomials.

Crossrefs

Cf. A007701 (T-polynomials), A086804 (U-polynomials), A171860 and A191092 (fixed n-cell polycubes proper in n-2 and n-3 dimensions, resp.).
A317403 is essentially the same sequence.
Diagonal 1 of A195739.

Programs

  • Magma
    [((n+1)^n/(n+1)^2)*2^n: n in [1..20]]; // Vincenzo Librandi, Jun 23 2014
  • Mathematica
    Table[((n + 1)^n)/(n + 1)^2 2^n, {n, 1, 30}] (* Vincenzo Librandi, Jun 23 2014 *)

Formula

a(n) = ((n+1)^(n-2))*2^n, n >= 1.
a(n) = (Det(Vn(xn[1],...,xn[n])))^2 with the determinant of the Vandermonde matrix Vn with elements (Vn)i,j:= xn[i]^j, i=1..n, j=0..n-1 and xn[i]:=2*cos(Pi*i/(n+1)), i=1..n, are the zeros of S(n,x):=U(n,x/2).
a(n) = ((-1)^(n*(n-1)/2))*Product_{j=1..n} ((d/dx)S(n,x)|_{x=xn[j]}), n >= 1, with the zeros xn[j], j=1..n, given above.
a(n) = A007830(n-2)*A000079(n), n >= 2. - Omar E. Pol, Aug 27 2011
E.g.f.: -LambertW(-2*x)*(2+LambertW(-2*x))/(4*x). - Vaclav Kotesovec, Jun 22 2014

Extensions

Slightly edited by Gill Barequet, May 24 2011

A054450 Triangle of partial row sums of unsigned triangle A049310(n,m), n >= m >= 0 (Chebyshev S-polynomials).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 4, 4, 1, 1, 8, 8, 5, 5, 1, 1, 13, 12, 12, 6, 6, 1, 1, 21, 21, 17, 17, 7, 7, 1, 1, 34, 33, 33, 23, 23, 8, 8, 1, 1, 55, 55, 50, 50, 30, 30, 9, 9, 1, 1, 89, 88, 88, 73, 73, 38, 38, 10, 10, 1, 1, 144, 144, 138, 138, 103, 103, 47, 47, 11, 11, 1, 1
Offset: 0

Views

Author

Wolfdieter Lang, Apr 27 2000 and May 08 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is Fib(z)/(1-x*z/(1-z^2)) where Fib(x)=1/(1-x-x^2) = g.f. for A000045(n+1) (Fibonacci numbers without 0).
This is the first member of the family of Riordan-type matrices obtained from the unsigned convolution matrix A049310 by repeated application of the partial row sums procedure.

Examples

			Triangle begins as:
   1;
   1,  1;
   2,  1,  1;
   3,  3,  1,  1;
   5,  4,  4,  1,  1;
   8,  8,  5,  5,  1,  1;
  13, 12, 12,  6,  6,  1,  1;
  21, 21, 17, 17,  7,  7,  1,  1;
  34, 33, 33, 23, 23,  8,  8,  1,  1;
  55, 55, 50, 50, 30, 30,  9,  9,  1, 1;
  89, 88, 88, 73, 73, 38, 38, 10, 10, 1, 1;
  ...
Fourth row polynomial (n=3): p(3,x) = 3 + 3*x + x^2 + x^3.
		

Crossrefs

Programs

Formula

T(n, m) = Sum_{k=m..n} |A049310(n, k)| (sequence of partial row sums in column m).
Column m recursion: T(n, m) = Sum_{j=m..n} T(j-1, m)*|A049310(n-j, 0)| + |A049310(n, m)|, n >= m >= 0, a(n, m) := 0 if n
T(n, 0) = A000045(n+1).
T(n, 1) = A052952(n-1).
T(n, 2) = A054451(n-2).
Sum_{k=0..n} T(n, k) = A029907(n) = A054453(n, 0).
G.f. for column m: Fib(x)*(x/(1-x^2))^m, m >= 0, with Fib(x) = g.f. A000045(n+1).
The corresponding square array has T(n, k) = Sum_{j=0..floor(k/2)} binomial(n+k-j, j). - Paul Barry, Oct 23 2004
From G. C. Greubel, Jul 25 2022: (Start)
T(n, 3) = A099571(n-3).
T(n, 4) = A099572(n-4).
T(n, n) = T(n, n-1) = A000012(n).
T(n, n-2) = A000027(n), n >= 2.
T(n, n-3) = A000027(n), n >= 3.
T(n, n-4) = A152948(n), n >= 4.
T(n, n-5) = A152948(n), n >= 5.
T(n, n-6) = A038793(n), n >= 6.
T(n, n-8) = A038794(n), n >= 8.
T(n, n-10) = A038795(n), n >= 10.
T(n, n-12) = A038796(n), n >= 12. (End)

A054451 Third column of triangle A054450 (partial row sums of unsigned Chebyshev triangle A049310).

Original entry on oeis.org

1, 1, 4, 5, 12, 17, 33, 50, 88, 138, 232, 370, 609, 979, 1596, 2575, 4180, 6755, 10945, 17700, 28656, 46356, 75024, 121380, 196417, 317797, 514228, 832025, 1346268, 2178293, 3524577, 5702870, 9227464, 14930334, 24157816, 39088150, 63245985, 102334135
Offset: 0

Author

Wolfdieter Lang, Apr 27 2000

Keywords

Comments

Equals triangle A173284 * [1, 2, 3, ...]. - Gary W. Adamson, Mar 03 2010

Crossrefs

Programs

  • Maple
    BB:=1/(1-k^2)^2/(1-k-k^2): seq(coeff(series(BB, k, n+1), k, n), n=0..50); # Zerinvary Lajos, May 16 2007
  • Mathematica
    LinearRecurrence[{1,3,-2,-3,1,1},{1,1,4,5,12,17},40] (* Harvey P. Dale, Oct 06 2024 *)
  • PARI
    Vec(-1/((x-1)^2*(x+1)^2*(x^2+x-1)) + O(x^100)) \\ Colin Barker, Jun 14 2015

Formula

a(n) = A054450(n+2, 2).
G.f.: Fib(x)/(1-x^2)^2, with Fib(x)=1/(1-x-x^2) = g.f. A000045 (Fibonacci numbers without 0).
a(2*k) = A027941(k)= F(2*k+3)-1; a(2*k+1)= F(2*(k+2))-(k+2)= A054452(k), k >= 0.
a(n-2) = Fibonacci(n+1) - binomial(n-floor(n/2), floor(n/2)), or a(n-2) = Sum_{i=0..floor(n/2)-1} binomial(n-i, i). - Jon Perry, Mar 18 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+2, k). - Paul Barry, Oct 23 2004

Extensions

More terms from James Sellers, Apr 28 2000

A134511 abs(A049310) * A128174 provided both arrays are read with offset (n,k) = (0,0).

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 3, 0, 1, 5, 0, 4, 0, 1, 0, 8, 0, 5, 0, 1, 13, 0, 12, 0, 6, 0, 1, 0, 21, 0, 17, 0, 7, 0, 1, 34, 0, 33, 0, 23, 0, 8, 0, 1, 0, 55, 0, 50, 0, 30, 0, 9, 0, 1, 89, 0, 88, 0, 73, 0, 38, 0, 10, 0, 1, 0, 144, 0, 138, 0, 103, 0, 47, 0, 11, 0, 1, 233, 0, 232, 0, 211, 0, 141, 0, 57, 0, 12, 0, 1
Offset: 0

Author

Gary W. Adamson, Oct 28 2007

Keywords

Comments

A112552(unsigned) = A128174 * A049310.
Row sums = A134512: (1, 1, 3, 4, 10, 14, 32, 46, 99, 145, ...).
From Petros Hadjicostas, Sep 03 2019: (Start)
To prove Alois P. Heinz's claim (see the Formula section and his Maple program below) we note that, for n >= 0 and 0 <= k <= n, T(n, n-k) = Sum_{r = 0 .. infinity} abs(A049310(n,r)) * A128174(r,n-k) = Sum_{r = n-k..n} abs(A049310(n,r)) * A128174(r,n-k). But A049310(n,r) = 0 when n + r is odd and A128174(r,n-k) = 1 iff r + n - k is even. Thus, when k is odd, T(n, n-k) = 0.
Assume now k is even. Then T(n, n-k) = Sum_{r = n-k..n and n+r even} abs(A049310(n,r)) = Sum_{r = n-k..n and n+r even} binomial((n+r)/2, r). Letting m = n-r (which is even), we see that the summation ranges from m = 0 to k over even numbers. Thus, let s = m/2, and so T(n, n-k) = Sum_{s = 0 .. k/2} binomial(n-s, n-2*s) = Sum_{s = 0 .. k/2} binomial(n-s, s) = F(n+1, k/2), where F(.,.) is the incomplete Fibonacci number from the references (see also the Formula section below).
(End)

Examples

			First few rows of the triangle T(n,k):
   1;
   0,  1;
   2,  0,  1;
   0,  3,  0,  1;
   5,  0,  4,  0,  1;
   0,  8,  0,  5,  0,  1;
  13,  0, 12,  0,  6,  0,  1;
   0, 21,  0, 17,  0,  7,  0,  1;
  34,  0, 33,  0, 23,  0,  8,  0,  1;
   0, 55,  0, 50,  0, 30,  0,  9,  0,  1;
  ...
		

Crossrefs

A(4n,2n) gives: A038736.

Programs

  • Maple
    N:= 20: # for the first N rows
    T128174:= Matrix(N,N,(i,j) -> `if`(j<=i, (i-j+1) mod 2, 0)):
    T049310:= Matrix(N,N):
    for i from 1 to N do
         P:= orthopoly[U](i-1,x/2);
         for j from 1 to i do
           T049310[i,j]:= abs(coeff(P,x,j-1))
         od
    od:
    A:= T049310 . T128174:
    for i from 1 to N do
    convert(A[i,1..i],list)
    od;  # Robert Israel, Mar 02 2018
    # second Maple program:
    T:= (n, k)-> `if`((n+k)::odd, 0, add(binomial(n-s, s), s=0..(n-k)/2)):
    seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Sep 02 2019
  • Mathematica
    T[n_, k_] := If[OddQ[n+k], 0, Sum[Binomial[n-s, s], {s, 0, (n-k)/2}]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 31 2021, after Alois P. Heinz *)

Formula

abs(A049310) * A128174 as infinite lower triangular matrices assuming both of them have offset (n,k) = (0,0).
From Petros Hadjicostas, Sep 03 2019: (Start)
Let F(m,r) = Sum_{j = 0..r} binomial(m-1-j, j) be the incomplete Fibonacci numbers from the references (defined for m >= 1 and 0 <= r <= floor((m-1)/2)).
As Alois P. Heinz observed, for n >= 0 and 0 <= k <= n, T(n, n-k) = F(n+1, k/2) when k is even, and = 0 otherwise (see his Maple program below).
(End)

Extensions

Edited by Robert Israel, Mar 02 2018

A131774 2*A065941 - A049310.

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 2, 0, 4, 1, 1, 2, 3, 4, 1, 2, -1, 8, 2, 6, 1, 1, 2, 4, 8, 7, 6, 1, 2, -2, 12, 0, 20, 6, 8, 1, 1, 2, 4, 12, 15, 20, 13, 8, 1, 2, -3, 16, -6, 42, 9, 40, 12, 10, 1
Offset: 1

Author

Gary W. Adamson, Jul 14 2007

Keywords

Comments

Row sums = the Lucas numbers, A000032, starting (1, 3, 4, 7, 11, ...). Generally, N*A065941 - (N-1)*A049310 = triangles with row sums = Fibonacci-like sequences starting (1, (N+1), (N+1+1), ...). With N = 2, row sums of the triangle A131774 = (1, 3, 4, 7, ...).

Examples

			First few rows of the triangle:
  1;
  2,  1;
  1,  2,  1;
  2,  0,  4,  1;
  1,  2,  3,  4,  1;
  2, -1,  8,  2,  6,  1;
  1,  2,  4,  8,  7,  6,  1;
  ...
		

Formula

2*A065941 - A049310 as infinite lower triangular matrices.

A131325 Triangle |3*|A049310(n,k)| - 2| read by rows, 0 <= k <= n.

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 2, 4, 2, 1, 1, 2, 7, 2, 1, 2, 7, 2, 10, 2, 1, 1, 2, 16, 2, 13, 2, 1, 2, 10, 2, 28, 2, 16, 2, 1, 1, 2, 28, 2, 43, 2, 19, 2, 1, 2, 13, 2, 58, 2, 61, 2, 22, 2, 1, 1, 2, 43, 2, 103, 2, 82, 2, 25, 2, 1, 2, 16, 2, 103, 2, 166, 2, 106, 2, 28, 2, 1, 1, 2, 61, 2, 208, 2, 250, 2
Offset: 0

Author

Gary W. Adamson, Jun 28 2007

Keywords

Examples

			First few rows of the triangle:
  1;
  2,  1;
  1,  2,  1;
  2,  4,  2,  1;
  1,  2,  7,  2,  1;
  2,  7,  2, 10,  2,  1;
  1,  2, 16,  2, 13,  2,  1;
  ...
		

Crossrefs

Cf. A049310, A131324, A131326 (row sums), A131327.

Programs

Extensions

Definition corrected by David Scambler, Aug 12 2012

A131775 3*A065941 - 2*A049310.

Original entry on oeis.org

1, 3, 1, 1, 3, 1, 3, -1, 6, 1, 1, 3, 3, 6, 1, 3, -3, 12, 1, 9, 1, 1, 3, 3, 12, 8, 9, 1, 3, -5, 18, -5, 30, 6, 12, 1, 1, 3, 1, 18, 15, 30, 16, 12, 1, 3, -7, 24, -19, 63, 3, 60, 14, 15, 1
Offset: 1

Author

Gary W. Adamson, Jul 14 2007

Keywords

Comments

Row sums = A000285, (a Fibonacci-like sequence) starting (1, 4, 5, 9, 14, 23, ...).

Examples

			Table begins:
  1;
  3,  1;
  1,  3,  1;
  3, -1,  6,  1;
  1,  3,  3,  6,  1;
  3, -3, 12,  1,  9,  1;
  1,  3,  3, 12,  8,  9,  1;
  3, -5, 18, -5, 30,  6, 12,  1;
  1,  3,  1, 18, 15, 30, 16, 12,  1;
  ...
		

Formula

A131776 4*A065941 - 3*A049310.

Original entry on oeis.org

1, 4, 1, 1, 4, 1, 4, -2, 8, 1, 1, 4, 3, 8, 1, 4, -5, 16, 0, 12, 1, 1, 4, 2, 16, 9, 12, 1, 4, -8, 24, -10, 40, 6, 16, 1, 1, 4, -2, 24, 15, 40, 19, 16, 1, 4, -11, 32, -32, 84, -3, 80, 16, 20, 1
Offset: 1

Author

Gary W. Adamson, Jul 14 2007

Keywords

Comments

Row sums = A022095, a Fibonacci-like sequence starting (1, 5, 6, 11, 17, 28, ...).

Examples

			First few rows of the triangle:
  1;
  4,  1;
  1,  4,  1;
  4, -2,  8,  1;
  1,  4,  3,  8,  1;
  4, -5, 16,  0, 12,  1;
  1,  4,  2, 16,  9, 12,  1;
  ...
		

Formula

4*A065941 - 3*A049310 as infinite lower triangular matrices.
Showing 1-10 of 490 results. Next