A131321 Triangle read by rows: A168561^2.
1, 0, 1, 2, 0, 1, 0, 4, 0, 1, 5, 0, 6, 0, 1, 0, 14, 0, 8, 0, 1, 13, 0, 27, 0, 10, 0, 1, 0, 46, 0, 44, 0, 12, 0, 1, 34, 0, 107, 0, 65, 0, 14, 0, 1, 0, 145, 0, 204, 0, 90, 0, 16, 0, 1, 89, 0, 393, 0, 345, 0, 119, 0, 18, 0, 1, 0, 444, 0, 854, 0, 538, 0, 152, 0, 20, 0, 1
Offset: 0
Examples
First few rows of the triangle are: 1; 0, 1; 2, 0, 1; 0, 4, 0, 1; 5, 0, 6, 0, 1; 0, 14, 0, 8, 0, 1; 13, 0, 27, 0, 10, 0, 1; ...
Programs
-
Maple
F:= (n, k)-> coeff(combinat[fibonacci](n+1, x), x, k): T:= (n, k)-> add(F(n, j)*F(j, k), j=0..n): seq(seq(T(n, k), k=0..n), n=0..14); # Alois P. Heinz, Dec 12 2019
Formula
A168561 squared, as an infinite lower triangular matrix.
Comments