cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A131321 Triangle read by rows: A168561^2.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 4, 0, 1, 5, 0, 6, 0, 1, 0, 14, 0, 8, 0, 1, 13, 0, 27, 0, 10, 0, 1, 0, 46, 0, 44, 0, 12, 0, 1, 34, 0, 107, 0, 65, 0, 14, 0, 1, 0, 145, 0, 204, 0, 90, 0, 16, 0, 1, 89, 0, 393, 0, 345, 0, 119, 0, 18, 0, 1, 0, 444, 0, 854, 0, 538, 0, 152, 0, 20, 0, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 28 2007

Keywords

Comments

Left border, nonzero terms = odd indexed Fibonacci numbers: (1, 2, 5, 13, ...). Next column, nonzero terms = A030267: (1, 4, 14, 46, 145, ...). Row sums = A131322: (1, 1, 3, 5, 12, 23, 51, ...).
Riordan array (f(x),x*f(x)) where f(x) = (1-x^2)/(1-3*x^2+x^4). Aerated version of triangle in A188137. - Philippe Deléham, Jan 26 2012

Examples

			First few rows of the triangle are:
   1;
   0,  1;
   2,  0,  1;
   0,  4,  0,  1;
   5,  0,  6,  0,  1;
   0, 14,  0,  8,  0,  1;
  13,  0, 27,  0, 10,  0,  1;
  ...
		

Crossrefs

Programs

  • Maple
    F:= (n, k)-> coeff(combinat[fibonacci](n+1, x), x, k):
    T:= (n, k)-> add(F(n, j)*F(j, k), j=0..n):
    seq(seq(T(n, k), k=0..n), n=0..14);  # Alois P. Heinz, Dec 12 2019

Formula

A168561 squared, as an infinite lower triangular matrix.

A131376 Triangle read by rows: T(n,k) = A007318(n,k) + A065941(n,k) - A168561(n,k).

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 2, 5, 1, 1, 5, 6, 6, 1, 2, 3, 14, 9, 8, 1, 1, 7, 14, 24, 16, 9, 1, 2, 4, 27, 30, 45, 21, 11, 1, 1, 9, 25, 62, 70, 66, 31, 12, 1, 2, 5, 44, 71, 147, 120, 104, 38, 14, 1, 1, 11, 39, 128, 203, 273, 217, 140, 51, 15, 1, 2, 6, 65, 139, 366, 434, 518, 329, 200, 60, 17, 1
Offset: 0

Views

Author

Gary W. Adamson, Jul 04 2007

Keywords

Comments

The old definition was: A007318 + A065941 - A049310. - N. J. A. Sloane, Aug 09 2019
Row sums = A117591: (1, 3, 5, 10, 19, 37, 72, ...).

Examples

			First few rows of the triangle are:
  1;
  2, 1;
  1, 3, 1;
  2, 2, 5, 1;
  1, 5, 6, 6, 1;
  2, 3, 14, 9, 8, 1;
  1, 7, 14, 24, 16, 9, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n, k] + Binomial[n - Floor[(k+1)/2], Floor[k/2]] - If[EvenQ[n+k], Binomial[(n+k)/2, k], 0], {n, 0, 11}, {k, 0, n}] // Flatten  (* Amiram Eldar, May 31 2025 *)

Extensions

The old definition of A131376 did not match its data, as Michel Marcus pointed out. The definition has been corrected here, keeping the data. The old definition with corrected data is now A309213. - N. J. A. Sloane, Aug 09 2019
More terms from Amiram Eldar, May 31 2025

A049310 Triangle of coefficients of Chebyshev's S(n,x) := U(n,x/2) polynomials (exponents in increasing order).

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 0, -2, 0, 1, 1, 0, -3, 0, 1, 0, 3, 0, -4, 0, 1, -1, 0, 6, 0, -5, 0, 1, 0, -4, 0, 10, 0, -6, 0, 1, 1, 0, -10, 0, 15, 0, -7, 0, 1, 0, 5, 0, -20, 0, 21, 0, -8, 0, 1, -1, 0, 15, 0, -35, 0, 28, 0, -9, 0, 1, 0, -6, 0, 35, 0, -56, 0, 36, 0, -10, 0, 1, 1, 0, -21, 0, 70, 0, -84, 0
Offset: 0

Views

Author

Keywords

Comments

G.f. for row polynomials S(n,x) (signed triangle): 1/(1-x*z+z^2). Unsigned triangle |a(n,m)| has Fibonacci polynomials F(n+1,x) as row polynomials with g.f. 1/(1-x*z-z^2). |a(n,m)| triangle has rows of Pascal's triangle A007318 in the even-numbered diagonals (odd-numbered ones have only 0's).
Row sums (unsigned triangle) A000045(n+1) (Fibonacci). Row sums (signed triangle) S(n,1) sequence = periodic(1,1,0,-1,-1,0) = A010892.
Alternating row sums A049347(n) = S(n,-1) = periodic(1,-1,0). - Wolfdieter Lang, Nov 04 2011
S(n,x) is the characteristic polynomial of the adjacency matrix of the n-path. - Michael Somos, Jun 24 2002
S(n,x) is also the matching polynomial of the n-path. - Eric W. Weisstein, Apr 10 2017
|T(n,k)| = number of compositions of n+1 into k+1 odd parts. Example: |T(7,3)| = 10 because we have (1,1,3,3), (1,3,1,3), (1,3,3,1), (3,1,1,3), (3,1,3,1), (3,3,1,1), (1,1,1,5), (1,1,5,1), (1,5,1,1) and (5,1,1,1). - Emeric Deutsch, Apr 09 2005
S(n,x)= R(n,x) + S(n-2,x), n >= 2, S(-1,x)=0, S(0,x)=1, R(n,x):=2*T(n,x/2) = Sum_{m=0..n} A127672(n,m)*x^m (monic integer Chebyshev T-Polynomials). This is the rewritten so-called trace of the transfer matrix formula for the T-polynomials. - Wolfdieter Lang, Dec 02 2010
In a regular N-gon inscribed in a unit circle, the side length is d(N,1) = 2*sin(Pi/N). The length ratio R(N,k):=d(N,k)/d(N,1) for the (k-1)-th diagonal, with k from {2,3,...,floor(N/2)}, N >= 4, equals S(k-1,x) = sin(k*Pi/N)/sin(Pi/N) with x=rho(N):=R(N,2) = 2*cos(Pi/N). Example: N=7 (heptagon), rho=R(7,2), sigma:=R(N,3) = S(2,rho) = rho^2 - 1. Motivated by the quoted paper by P. Steinbach. - Wolfdieter Lang, Dec 02 2010
From Wolfdieter Lang, Jul 12 2011: (Start)
In q- or basic analysis, q-numbers are [n]_q := S(n-1,q+1/q) = (q^n-(1/q)^n)/(q-1/q), with the row polynomials S(n,x), n >= 0.
The zeros of the row polynomials S(n-1,x) are (from those of Chebyshev U-polynomials):
x(n-1;k) = +- t(k,rho(n)), k = 1..ceiling((n-1)/2), n >= 2, with t(n,x) the row polynomials of A127672 and rho(n):= 2*cos(Pi/n). The simple vanishing zero for even n appears here as +0 and -0.
Factorization of the row polynomials S(n-1,x), x >= 1, in terms of the minimal polynomials of cos(2 Pi/2), called Psi(n,x), with coefficients given by A181875/A181876:
S(n-1,x) = (2^(n-1))*Product_{n>=1}(Psi(d,x/2), 2 < d | 2n).
(From the rewritten eq. (3) of the Watkins and Zeitlin reference, given under A181872.) [See the W. Lang ArXiv link, Proposition 9, eq. (62). - Wolfdieter Lang, Apr 14 2018]
(End)
The discriminants of the S(n,x) polynomials are found in A127670. - Wolfdieter Lang, Aug 03 2011
This is an example for a subclass of Riordan convolution arrays (lower triangular matrices) called Bell arrays. See the L. W. Shapiro et al. reference under A007318. If a Riordan array is named (G(z),F(z)) with F(z)=z*Fhat(z), the o.g.f. for the row polynomials is G(z)/(1-x*z*Fhat(z)), and it becomes a Bell array if G(z)=Fhat(z). For the present Bell type triangle G(z)=1/(1+z^2) (see the o.g.f. comment above). This leads to the o.g.f. for the column no. k, k >= 0, x^k/(1+x^2)^(k+1) (see the formula section), the one for the row sums and for the alternating row sums (see comments above). The Riordan (Bell) A- and Z-sequences (defined in a W. Lang link under A006232, with references) have o.g.f.s 1-x*c(x^2) and -x*c(x^2), with the o.g.f. of the Catalan numbers A000108. Together they lead to a recurrence given in the formula section. - Wolfdieter Lang, Nov 04 2011
The determinant of the N x N matrix S(N,[x[1], ..., x[N]]) with elements S(m-1,x[n]), for n, m = 1, 2, ..., N, and for any x[n], is identical with the determinant of V(N,[x[1], ..., x[N]]) with elements x[n]^(m-1) (a Vandermondian, which equals Product_{1 <= i < j<= N} (x[j] - x[i])). This is a special instance of a theorem valid for any N >= 1 and any monic polynomial system p(m,x), m>=0, with p(0,x) = 1. For this theorem see the Vein-Dale reference, p. 59. Thanks to L. Edson Jeffery for an email asking for a proof of the non-singularity of the matrix S(N,[x[1], ...., x[N]]) if and only if the x[j], j = 1..N, are pairwise distinct. - Wolfdieter Lang, Aug 26 2013
These S polynomials also appear in the context of modular forms. The rescaled Hecke operator T*n = n^((1-k)/2)*T_n acting on modular forms of weight k satisfies T*(p^n) = S(n, T*p), for each prime p and positive integer n. See the Koecher-Krieg reference, p. 223. - _Wolfdieter Lang, Jan 22 2016
For a shifted o.g.f. (mod signs), its compositional inverse, and connections to Motzkin and Fibonacci polynomials, non-crossing partitions and other combinatorial structures, see A097610. - Tom Copeland, Jan 23 2016
From M. Sinan Kul, Jan 30 2016; edited by Wolfdieter Lang, Jan 31 2016 and Feb 01 2016: (Start)
Solutions of the Diophantine equation u^2 + v^2 - k*u*v = 1 for integer k given by (u(k,n), v(k,n)) = (S(n,k), S(n-1,k)) because of the Cassini-Simson identity: S(n,x)^2 - S(n+1,x)*S(n-1, x) = 1, after use of the S-recurrence. Note that S(-n, x) = -S(-n-2, x), n >= 1, and the periodicity of some S(n, k) sequences.
Hence another way to obtain the row polynomials would be to take powers of the matrix [x, -1; 1,0]: S(n, x) = (([x, -1; 1, 0])^n)[1,1], n >= 0.
See also a Feb 01 2016 comment on A115139 for a well-known S(n, x) sum formula.
Then we have with the present T triangle
A039834(n) = -i^(n+1)*T(n-1, k) where i is the imaginary unit and n >= 0.
A051286(n) = Sum_{i=0..n} T(n,i)^2 (see the Philippe Deléham, Nov 21 2005 formula),
A181545(n) = Sum_{i=0..n+1} abs(T(n,i)^3),
A181546(n) = Sum_{i=0..n+1} T(n,i)^4,
A181547(n) = Sum_{i=0..n+1} abs(T(n,i)^5).
S(n, 0) = A056594(n), and for k = 1..10 the sequences S(n-1, k) with offset n = 0 are A128834, A001477, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189.
(End)
For more on the Diophantine equation presented by Kul, see the Ismail paper. - Tom Copeland, Jan 31 2016
The o.g.f. for the Legendre polynomials L(n,x) is 1 / sqrt(1- 2x*z + z^2), and squaring it gives the o.g.f. of U(n,x), A053117, so Sum_{k=0..n} L(k,x/2) L(n-k,x/2) = S(n,x). This gives S(n,x) = L(n/2,x/2)^2 + 2*Sum_{k=0..n/2-1} L(k,x/2) L(n-k,x/2) for n even and S(n,x) = 2*Sum_{k=0..(n-1)/2} L(k,x/2) L(n-k,x/2) for odd n. For a connection to elliptic curves and modular forms, see A053117. For the normalized Legendre polynomials, see A100258. For other properties and relations to other polynomials, see Allouche et al. - Tom Copeland, Feb 04 2016
LG(x,h1,h2) = -log(1 - h1*x + h2*x^2) = Sum_{n>0} F(n,-h1,h2,0,..,0) x^n/n is a log series generator of the bivariate row polynomials of A127672 with A127672(0,0) = 0 and where F(n,b1,b2,..,bn) are the Faber polynomials of A263916. Exp(LG(x,h1,h2)) = 1 / (1 - h1*x + h2*x^2 ) is the o.g.f. of the bivariate row polynomials of this entry. - Tom Copeland, Feb 15 2016 (Instances of the bivariate o.g.f. for this entry are on pp. 5 and 18 of Sunada. - Tom Copeland, Jan 18 2021)
For distinct odd primes p and q the Legendre symbol can be written as Legendre(q,p) = Product_{k=1..P} S(q-1, 2*cos(2*Pi*k/p)), with P = (p-1)/2. See the Lemmermeyer reference, eq. (8.1) on p. 236. Using the zeros of S(q-1, x) (see above) one has S(q-1, x) = Product_{l=1..Q} (x^2 - (2*cos(Pi*l/q))^2), with Q = (q-1)/2. Thus S(q-1, 2*cos(2*Pi*k/p)) = ((-4)^Q)*Product_{l=1..Q} (sin^2(2*Pi*k/p) - sin^2(Pi*l/q)) = ((-4)^Q)*Product_{m=1..Q} (sin^2(2*Pi*k/p) - sin^2(2*Pi*m/q)). For the proof of the last equality see a W. Lang comment on the triangle A057059 for n = Q and an obvious function f. This leads to Eisenstein's proof of the quadratic reciprocity law Legendre(q,p) = ((-1)^(P*Q)) * Legendre(p,q), See the Lemmermeyer reference, pp. 236-237. - Wolfdieter Lang, Aug 28 2016
For connections to generalized Fibonacci polynomials, compare their generating function on p. 5 of the Amdeberhan et al. link with the o.g.f. given above for the bivariate row polynomials of this entry. - Tom Copeland, Jan 08 2017
The formula for Ramanujan's tau function (see A000594) for prime powers is tau(p^k) = p^(11*k/2)*S(k, p^(-11/2)*tau(p)) for k >= 1, and p = A000040(n), n >= 1. See the Hardy reference, p. 164, eqs. (10.3.4) and (10.3.6) rewritten in terms of S. - Wolfdieter Lang, Jan 27 2017
From Wolfdieter Lang, May 08 2017: (Start)
The number of zeros Z(n) of the S(n, x) polynomials in the open interval (-1,+1) is 2*b(n) for even n >= 0 and 1 + 2*b(n) for odd n >= 1, where b(n) = floor(n/2) - floor((n+1)/3). This b(n) is the number of integers k in the interval (n+1)/3 < k <= floor(n/2). See a comment on the zeros of S(n, x) above, and b(n) = A008615(n-2), n >= 0. The numbers Z(n) have been proposed (with a conjecture related to A008611) by Michel Lagneau, as the number of zeros of Fibonacci polynomials on the imaginary axis (-I,+I), with I=sqrt(-1). They are Z(n) = A008611(n-1), n >= 0, with A008611(-1) = 0. Also Z(n) = A194960(n-4), n >= 0. Proof using the A008611 version. A194960 follows from this.
In general the number of zeros Z(a;n) of S(n, x) for n >= 0 in the open interval (-a,+a) for a from the interval (0,2) (x >= 2 never has zeros, and a=0 is trivial: Z(0;n) = 0) is with b(a;n) = floor(n//2) - floor((n+1)*arccos(a/2)/Pi), as above Z(a;n) = 2*b(a;n) for even n >= 0 and 1 + 2*b(a;n) for odd n >= 1. For the closed interval [-a,+a] Z(0;n) = 1 and for a from (0,1) one uses for Z(a;n) the values b(a;n) = floor(n/2) - ceiling((n+1)*arccos(a/2)/Pi) + 1. (End)
The Riordan row polynomials S(n, x) (Chebyshev S) belong to the Boas-Buck class (see a comment and references in A046521), hence they satisfy the Boas-Buck identity: (E_x - n*1)*S(n, x) = (E_x + 1)*Sum_{p=0..n-1} (1 - (-1)^p)*(-1)^((p+1)/2)*S(n-1-p, x), for n >= 0, where E_x = x*d/dx (Euler operator). For the triangle T(n, k) this entails a recurrence for the sequence of column k, given in the formula section. - Wolfdieter Lang, Aug 11 2017
The e.g.f. E(x,t) := Sum_{n>=0} (t^n/n!)*S(n,x) for the row polynomials is obtained via inverse Laplace transformation from the above given o.g.f. as E(x,t) = ((1/xm)*exp(t/xm) - (1/xp)*exp(t/xp) )/(xp - xm) with xp = (x + sqrt(x^2-4))/2 and xm = (x - sqrt(x^2-4))/2. - Wolfdieter Lang, Nov 08 2017
From Wolfdieter Lang, Apr 12 2018: (Start)
Factorization of row polynomials S(n, x), for n >= 1, in terms of C polynomials (not Chebyshev C) with coefficients given in A187360. This is obtained from the factorization into Psi polynomials (see the Jul 12 2011 comment above) but written in terms of minimal polynomials of 2*cos(2*Pi/n) with coefficients in A232624:
S(2*k, x) = Product_{2 <= d | (2*k+1)} C(d, x)*(-1)^deg(d)*C(d, -x), with deg(d) = A055034(d) the degree of C(d, x).
S(2*k+1, x) = Product_{2 <= d | 2*(k+1)} C(d, x) * Product_{3 <= 2*d + 1 | (k+1)} (-1)^(deg(2*d+1))*C(2*d+1, -x).
Note that (-1)^(deg(2*d+1))*C(2*d+1, -x)*C(2*d+1, x) pairs always appear.
The number of C factors of S(2*k, x), for k >= 0, is 2*(tau(2*k+1) - 1) = 2*(A099774(k+1) - 1) = 2*A095374(k), and for S(2*k+1, x), for k >= 0, it is tau(2*(k+1)) + tau_{odd}(k+1) - 2 = A302707(k), with tau(2*k+1) = A099774(k+1), tau(n) = A000005 and tau(2*(k+1)) = A099777(k+1).
For the reverse problem, the factorization of C polynomials into S polynomials, see A255237. (End)
The S polynomials with general initial conditions S(a,b;n,x) = x*S(a,b;n-1,x) - S(a,b;n-2,x), for n >= 1, with S(a,b;-1,x) = a and S(a,b;0,x) = b are S(a,b;n,x) = b*S(n, x) - a*S(n-1, x), for n >= -1. Recall that S(-2, x) = -1 and S(-1, x) = 0. The o.g.f. is G(a,b;z,x) = (b - a*z)/(1 - x*z + z^2). - Wolfdieter Lang, Oct 18 2019
Also the convolution triangle of A101455. - Peter Luschny, Oct 06 2022
From Wolfdieter Lang, Apr 26 2023: (Start)
Multi-section of S-polynomials: S(m*n+k, x) = S(m+k, x)*S(n-1, R(m, x)) - S(k, x)*S(n-2, R(m, x)), with R(n, x) = S(n, x) - S(n-2, x) (see A127672), S(-2, x) = -1, and S(-1, x) = 0, for n >= 0, m >= 1, and k = 0, 1, ..., m-1.
O.g.f. of {S(m*n+k, y)}_{n>=0}: G(m,k,y,x) = (S(k, y) - (S(k, y)*R(m, y) - S(m+k, y))*x)/(1 - R(m,y)*x + x^2).
See eqs. (40) and (49), with r = x or y and s =-1, of the G. Detlefs and W. Lang link at A034807. (End)
S(n, x) for complex n and complex x: S(n, x) = ((-i/2)/sqrt(1 - (x/2)^2))*(q(x/2)*exp(+n*log(q(x/2))) - (1/q(x/2))*exp(-n*log(q(x/2)))), with q(x) = x + sqrt(1 - x^2)*i. Here log(z) = |z| + Arg(z)*i, with Arg(z) from [-Pi,+Pi) (principal branch). This satisfies the recurrence relation for S because it is derived from the Binet - de Moivre formula for S. Examples: S(n/m, 0) = cos((n/m)*Pi/4), for n >= 0 and m >= 1. S(n*i, 0) = (1/2)*(1 + exp(n*Pi))*exp(-(n/2)*Pi), for n >= 0. S(1+i, 2+i) = 0.6397424847... + 1.0355669490...*i. Thanks to Roberto Alfano for asking a question leading to this formula. - Wolfdieter Lang, Jun 05 2023
Lim_{n->oo} S(n, x)/S(n-1, x) = r(x) = (x - sqrt(x^2 -4))/2, for |x| >= 2. For x = +-2, this limit is +-1. - Wolfdieter Lang, Nov 15 2023

Examples

			The triangle T(n, k) begins:
  n\k  0  1   2   3   4   5   6    7   8   9  10  11
  0:   1
  1:   0  1
  2:  -1  0   1
  3:   0 -2   0   1
  4:   1  0  -3   0   1
  5:   0  3   0  -4   0   1
  6:  -1  0   6   0  -5   0   1
  7:   0 -4   0  10   0  -6   0    1
  8:   1  0 -10   0  15   0  -7    0   1
  9:   0  5   0 -20   0  21   0   -8   0   1
  10: -1  0  15   0 -35   0  28    0  -9   0   1
  11:  0 -6   0  35   0 -56   0   36   0 -10   0   1
  ... Reformatted and extended by _Wolfdieter Lang_, Oct 24 2012
For more rows see the link.
E.g., fourth row {0,-2,0,1} corresponds to polynomial S(3,x)= -2*x + x^3.
From _Wolfdieter Lang_, Jul 12 2011: (Start)
Zeros of S(3,x) with rho(4)= 2*cos(Pi/4) = sqrt(2):
  +- t(1,sqrt(2)) = +- sqrt(2) and
  +- t(2,sqrt(2)) = +- 0.
Factorization of S(3,x) in terms of Psi polynomials:
S(3,x) = (2^3)*Psi(4,x/2)*Psi(8,x/2) = x*(x^2-2).
(End)
From _Wolfdieter Lang_, Nov 04 2011: (Start)
A- and Z- sequence recurrence:
T(4,0) = - (C(0)*T(3,1) + C(1)*T(3,3)) = -(-2 + 1) = +1,
T(5,3) = -3 - 1*1 = -4.
(End)
Boas-Buck recurrence for column k = 2, n = 6: S(6, 2) = (3/4)*(0 - 2* S(4 ,2) + 0 + 2*S(2, 2)) = (3/4)*(-2*(-3) + 2) = 6. - _Wolfdieter Lang_, Aug 11 2017
From _Wolfdieter Lang_, Apr 12 2018: (Start)
Factorization into C polynomials (see the Apr 12 2018 comment):
S(4, x) = 1 - 3*x^2 + x^4 = (-1 + x + x^2)*(-1 - x + x^2) = (-C(5, -x)) * C(5, x); the number of factors is 2 = 2*A095374(2).
S(5, x) = 3*x - 4*x^3 + x^5 = x*(-1 + x)*(1 + x)*(-3 + x^2) = C(2, x)*C(3, x)*(-C(3, -x))*C(6, x); the number of factors is 4 = A302707(2). (End)
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 164.
  • Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, p. 223.
  • Franz Lemmermeyer, Reciprocity Laws. From Euler to Eisenstein, Springer, 2000.
  • D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970; p. 232, Sect. 3.3.38.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990, pp. 60 - 61.
  • R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer, 1999.

Crossrefs

Cf. A000005, A000217, A000292, A000332, A000389, A001227, A007318, A008611, A008615, A101455, A010892, A011973, A053112 (without zeros), A053117, A053119 (reflection), A053121 (inverse triangle), A055034, A097610, A099774, A099777, A100258, A112552 (first column clipped), A127672, A168561 (absolute values), A187360. A194960, A232624, A255237.
Triangles of coefficients of Chebyshev's S(n,x+k) for k = 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5: A207824, A207823, A125662, A078812, A101950, A049310, A104562, A053122, A207815, A159764, A123967.

Programs

  • Magma
    A049310:= func< n,k | ((n+k) mod 2) eq 0 select (-1)^(Floor((n+k)/2)+k)*Binomial(Floor((n+k)/2), k) else 0 >;
    [A049310(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 25 2022
  • Maple
    A049310 := proc(n,k): binomial((n+k)/2,(n-k)/2)*cos(Pi*(n-k)/2)*(1+(-1)^(n-k))/2 end: seq(seq(A049310(n,k), k=0..n),n=0..11); # Johannes W. Meijer, Aug 08 2011
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, n -> ifelse(irem(n, 2) = 0, 0, (-1)^iquo(n-1, 2))); # Peter Luschny, Oct 06 2022
  • Mathematica
    t[n_, k_] /; EvenQ[n+k] = ((-1)^((n+k)/2+k))*Binomial[(n+k)/2, k]; t[n_, k_] /; OddQ[n+k] = 0; Flatten[Table[t[n, k], {n, 0, 12}, {k, 0, n}]][[;; 86]] (* Jean-François Alcover, Jul 05 2011 *)
    Table[Coefficient[(-I)^n Fibonacci[n + 1, - I x], x, k], {n, 0, 10}, {k, 0, n}] //Flatten (* Clark Kimberling, Aug 02 2011; corrected by Eric W. Weisstein, Apr 06 2017 *)
    CoefficientList[ChebyshevU[Range[0, 10], -x/2], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
    CoefficientList[Table[(-I)^n Fibonacci[n + 1, -I x], {n, 0, 10}], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
  • PARI
    {T(n, k) = if( k<0 || k>n || (n + k)%2, 0, (-1)^((n + k)/2 + k) * binomial((n + k)/2, k))} /* Michael Somos, Jun 24 2002 */
    
  • SageMath
    @CachedFunction
    def A049310(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        return A049310(n-1,k-1) - A049310(n-2,k)
    for n in (0..9): [A049310(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
    

Formula

T(n,k) := 0 if n < k or n+k odd, otherwise ((-1)^((n+k)/2+k))*binomial((n+k)/2, k); T(n, k) = -T(n-2, k)+T(n-1, k-1), T(n, -1) := 0 =: T(-1, k), T(0, 0)=1, T(n, k)= 0 if n < k or n+k odd; g.f. k-th column: (1 / (1 + x^2)^(k + 1)) * x^k. - Michael Somos, Jun 24 2002
T(n,k) = binomial((n+k)/2, (n-k)/2)*cos(Pi*(n-k)/2)*(1+(-1)^(n-k))/2. - Paul Barry, Aug 28 2005
Sum_{k=0..n} T(n,k)^2 = A051286(n). - Philippe Deléham, Nov 21 2005
Recurrence for the (unsigned) Fibonacci polynomials: F(1)=1, F(2)=x; for n > 2, F(n) = x*F(n-1) + F(n-2).
From Wolfdieter Lang, Nov 04 2011: (Start)
The Riordan A- and Z-sequences, given in a comment above, lead together to the recurrence:
T(n,k) = 0 if n < k, if k=0 then T(0,0)=1 and
T(n,0)= -Sum_{i=0..floor((n-1)/2)} C(i)*T(n-1,2*i+1), otherwise T(n,k) = T(n-1,k-1) - Sum_{i=1..floor((n-k)/2)} C(i)*T(n-1,k-1+2*i), with the Catalan numbers C(n)=A000108(n).
(End)
The row polynomials satisfy also S(n,x) = 2*(T(n+2, x/2) - T(n, x/2))/(x^2-4) with the Chebyshev T-polynomials. Proof: Use the trace formula 2*T(n, x/2) = S(n, x) - S(n-2, x) (see the Dec 02 2010 comment above) and the S-recurrence several times. This is a formula which expresses the S- in terms of the T-polynomials. - Wolfdieter Lang, Aug 07 2014
From Tom Copeland, Dec 06 2015: (Start)
The non-vanishing, unsigned subdiagonals Diag_(2n) contain the elements D(n,k) = Sum_{j=0..k} D(n-1,j) = (k+1) (k+2) ... (k+n) / n! = binomial(n+k,n), so the o.g.f. for the subdiagonal is (1-x)^(-(n+1)). E.g., Diag_4 contains D(2,3) = D(1,0) + D(1,1) + D(1,2) + D(1,3) = 1 + 2 + 3 + 4 = 10 = binomial(5,2). Diag_4 is shifted A000217; Diag_6, shifted A000292: Diag_8, shifted A000332; and Diag_10, A000389.
The non-vanishing antidiagonals are signed rows of the Pascal triangle A007318.
For a reversed, unsigned version with the zeros removed, see A011973. (End)
The Boas-Buck recurrence (see a comment above) for the sequence of column k is: S(n, k) = ((k+1)/(n-k))*Sum_{p=0..n-1-k} (1 - (-1)^p)*(-1)^((p+1)/2) * S(n-1-p, k), for n > k >= 0 and input S(k, k) = 1. - Wolfdieter Lang, Aug 11 2017
The m-th row consecutive nonzero entries in order are (-1)^c*(c+b)!/c!b! with c = m/2, m/2-1, ..., 0 and b = m-2c if m is even and with c = (m-1)/2, (m-1)/2-1, ..., 0 with b = m-2c if m is odd. For the 8th row starting at a(36) the 5 consecutive nonzero entries in order are 1,-10,15,-7,1 given by c = 4,3,2,1,0 and b = 0,2,4,6,8. - Richard Turk, Aug 20 2017
O.g.f.: exp( Sum_{n >= 0} 2*T(n,x/2)*t^n/n ) = 1 + x*t + (-1 + x^2)*t^2 + (-2*x + x^3)*t^3 + (1 - 3*x^2 + x^4)*t^4 + ..., where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Aug 15 2022

A192232 Constant term of the reduction of n-th Fibonacci polynomial by x^2 -> x+1. (See Comments.)

Original entry on oeis.org

1, 0, 2, 1, 6, 7, 22, 36, 89, 168, 377, 756, 1630, 3353, 7110, 14783, 31130, 65016, 136513, 285648, 599041, 1254456, 2629418, 5508097, 11542854, 24183271, 50674318, 106173180, 222470009, 466131960, 976694489, 2046447180, 4287928678, 8984443769, 18825088134
Offset: 1

Views

Author

Clark Kimberling, Jun 26 2011

Keywords

Comments

Polynomial reduction: an introduction
...
We begin with an example. Suppose that p(x) is a polynomial, so that p(x)=(x^2)t(x)+r(x) for some polynomials t(x) and r(x), where r(x) has degree 0 or 1. Replace x^2 by x+1 to get (x+1)t(x)+r(x), which is (x^2)u(x)+v(x) for some u(x) and v(x), where v(x) has degree 0 or 1. Continuing in this manner results in a fixed polynomial w(x) of degree 0 or 1. If p(x)=x^n, then w(x)=x*F(n)+F(n-1), where F=A000045, the sequence of Fibonacci numbers.
In order to generalize, write d(g) for the degree of an arbitrary polynomial g(x), and suppose that p, q, s are polynomials satisfying d(s)s in this manner until reaching w such that d(w)s.
The coefficients of (reduction of p by q->s) comprise a vector of length d(q)-1, so that a sequence p(n,x) of polynomials begets a sequence of vectors, such as (F(n), F(n-1)) in the above example. We are interested in the component sequences (e.g., F(n-1) and F(n)) for various choices of p(n,x).
Following are examples of reduction by x^2->x+1:
n-th Fibonacci p(x) -> A192232+x*A112576
n-th cyclotomic p(x) -> A192233+x*A051258
n-th 1st-kind Chebyshev p(x) -> A192234+x*A071101
n-th 2nd-kind Chebyshev p(x) -> A192235+x*A192236
x(x+1)(x+2)...(x+n-1) -> A192238+x*A192239
(x+1)^n -> A001519+x*A001906
(x^2+x+1)^n -> A154626+x*A087635
(x+2)^n -> A020876+x*A030191
(x+3)^n -> A192240+x*A099453
...
Suppose that b=(b(0), b(1),...) is a sequence, and let p(n,x)=b(0)+b(1)x+b(2)x^2+...+b(n)x^n. We define (reduction of sequence b by q->s) to be the vector given by (reduction of p(n,x) by q->s), with components in the order of powers, from 0 up to d(q)-1. For k=0,1,...,d(q)-1, we then have the "k-sequence of (reduction of sequence b by q->s)". Continuing the example, if b is the sequence given by b(k)=1 if k=n and b(k)=0 otherwise, then the 0-sequence of (reduction of b by x^2->x+1) is (F(n-1)), and the 1-sequence is (F(n)).
...
For selected sequences b, here are the 0-sequences and 1-sequences of (reduction of b by x^2->x+1):
b=A000045, Fibonacci sequence (1,1,2,3,5,8,...) yields
0-sequence A166536 and 1-sequence A064831.
b=(1,A000045)=(1,1,1,2,3,5,8,...) yields
0-sequence A166516 and 1-sequence A001654.
b=A000027, natural number sequence (1,2,3,4,...) yields
0-sequence A190062 and 1-sequence A122491.
b=A000032, Lucas sequence (1,3,4,7,11,...) yields
0-sequence A192243 and 1-sequence A192068.
b=A000217, triangular sequence (1,3,6,10,...) yields
0-sequence A192244 and 1-sequence A192245.
b=A000290, squares sequence (1,4,9,16,...) yields
0-sequence A192254 and 1-sequence A192255.
More examples: A192245-A192257.
...
More comments:
(1) If s(n,x)=(reduction of x^n by q->s) and
p(x)=p(0)x^n+p(1)x^(n-1)+...+p(n)x^0, then
(reduction of p by q->s)=p(0)s(n,x)+p(1)s(n-1,x)
+...+p(n-1)s(1,x)+p(n)s(0,x). See A192744.
(2) For any polynomial p(x), let P(x)=(reduction of p(x)
by q->s). Then P(r)=p(r) for each zero r of
q(x)-s(x). In particular, if q(x)=x^2 and s(x)=x+1,
then P(r)=p(r) if r=(1+sqrt(5))/2 (golden ratio) or
r=(1-sqrt(5))/2.

Examples

			The first four Fibonacci polynomials and their reductions by x^2->x+1 are shown here:
F1(x)=1 -> 1 + 0x
F2(x)=x -> 0 + 1x
F3(x)=x^2+1 -> 2+1x
F4(x)=x^3+2x -> 1+4x
F5(x)=x^4+3x^2+1 -> (x+1)^2+3(x+1)+1 -> 6+6x.
From these, read A192232=(1,0,1,1,6,...) and A112576=(0,1,1,4,6,...).
		

Crossrefs

Programs

  • Mathematica
    q[x_] := x + 1;
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),  x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[FixedPoint[Expand[#1 /. reductionRules] &, Fibonacci[n, x]], {n, 1, 40}];
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}]
      (* A192232 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}]
    (* A112576 *)
    (* Peter J. C. Moses, Jun 25 2011 *)
    LinearRecurrence[{1, 3, -1, -1}, {1, 0, 2, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
  • PARI
    Vec((1-x-x^2)/(1-x-3*x^2+x^3+x^4)+O(x^99)) \\ Charles R Greathouse IV, Jan 08 2013

Formula

Empirical G.f.: -x*(x^2+x-1)/(x^4+x^3-3*x^2-x+1). - Colin Barker, Sep 11 2012
The above formula is correct. - Charles R Greathouse IV, Jan 08 2013
a(n) = A265752(A206296(n)). - Antti Karttunen, Dec 15 2015
a(n) = A112576(n) -A112576(n-1) -A112576(n-2). - R. J. Mathar, Dec 16 2015

Extensions

Example corrected by Clark Kimberling, Dec 18 2017

A046854 Triangle read by rows: T(n, k) = binomial(floor((n+k)/2), k), n >= k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 3, 3, 4, 1, 1, 1, 3, 6, 4, 5, 1, 1, 1, 4, 6, 10, 5, 6, 1, 1, 1, 4, 10, 10, 15, 6, 7, 1, 1, 1, 5, 10, 20, 15, 21, 7, 8, 1, 1, 1, 5, 15, 20, 35, 21, 28, 8, 9, 1, 1, 1, 6, 15, 35, 35, 56, 28, 36, 9, 10, 1, 1, 1, 6, 21, 35, 70, 56, 84, 36, 45, 10, 11, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Row sums are Fibonacci(n+2). Diagonal sums are A016116. - Paul Barry, Jul 07 2004
Riordan array (1/(1-x), x/(1-x^2)). Matrix inverse is A106180. - Paul Barry, Apr 24 2005
As an infinite lower triangular matrix * [1,2,3,...] = A055244. - Gary W. Adamson, Dec 23 2008
From Emeric Deutsch, Jun 18 2010: (Start)
T(n,k) is the number of alternating parity increasing subsequences of {1,2,...,n} of size k, starting with an odd number (Terquem's problem, see the Riordan reference, p. 17). Example: T(8,5)=6 because we have 12345, 12347, 12367, 12567, 14567, and 34567.
T(n,k) is the number of alternating parity increasing subsequences of {1,2,...,n,n+1} of size k, starting with an even number. Example: T(7,4)=5 because we have 2345, 2347, 2367, 2567, and 4567. (End)
From L. Edson Jeffery, Mar 01 2011: (Start)
This triangle can be constructed as follows. Interlace two copies of the table of binomial coefficients to get the preliminary table
1
1
1 1
1 1
1 2 1
1 2 1
1 3 3 1
1 3 3 1
...,
then shift each entire r-th column up r rows, r=0,1,2,.... Also, a signed version of this sequence (A187660 in tabular form) begins with
1;
1, -1;
1, -1, -1;
1, -2, -1, 1;
1, -2, -3, 1, 1;
...
(compare with A066170, A130777). Let T(N,k) denote the k-th entry in row N of the signed table. Then, for N>1, row N gives the coefficients of the characteristic function p_N(x) = Sum_{k=0..N} T(N,k)*x^(N-k) = 0 of the N X N matrix U_N=[(0 ... 0 1);(0 ... 0 1 1);...;(0 1 ... 1);(1 ... 1)]. Now let Q_r(t) be a polynomial with recurrence relation Q_r(t)=t*Q_(r-1)(t)-Q_(r-2)(t) (r>1), with Q_0(t)=1 and Q_1(t)=t. Then p_N(x)=0 has solutions Q_(N-1)(phi_j), where phi_j=2*(-1)^(j-1)*cos(j*Pi/(2*N+1)), j=1,2,...,N.
For example, row N=3 is {1,-2,-1,1}, giving the coefficients of the characteristic function p_3(x) = x^3-2*x^2-x+1 = 0 for the 3 X 3 matrix U_3=[(0 0 1);(0 1 1);(1 1 1)], with eigenvalues Q_2(phi_j)=[2*(-1)^(j-1)*cos(j*Pi/7)]^2-1, j=1,2,3. (End)
Given the signed polynomials (+--++--,...) of the triangle, the largest root of the n-th row polynomial is the longest (2n+1) regular polygon diagonal length, with edge = 1. Example: the largest root to x^3 - 2x^2 - x + 1 = 0 is 2.24697...; the longest heptagon diagonal, sin(3*Pi/7)/sin(Pi/7). - Gary W. Adamson, Sep 06 2011
Given the signed polynomials from Gary W. Adamson's comment, the largest root of the n-th polynomial also equals the length from the center to a corner (vertex) of a regular 2*(2*n+1)-sided polygon with side (edge) length = 1. - L. Edson Jeffery, Jan 01 2012
Put f(x,0) = 1 and f(x,n) = x + 1/f(x,n-1). Then f(x,n) = u(x,n)/v(x,n), where u(x,n) and v(x,n) are polynomials. The flattened triangles of coefficients of u and v are both essentially A046854, as indicated by the Mathematica program headed "Polynomials". - Clark Kimberling, Oct 12 2014
From Jeremy Dover, Jun 07 2016: (Start)
T(n,k) is the number of binary strings of length n+1 starting with 0 that have exactly k pairs of consecutive 0's and no pairs of consecutive 1's.
T(n,k) is the number of binary strings of length n+2 starting with 1 that have exactly k pairs of consecutive 0's and no pairs of consecutive 1's. (End)

Examples

			Triangle begins:
  1;
  1 1;
  1 1 1;
  1 2 1 1;
  1 2 3 1 1;
  1 3 3 4 1 1;
  ...
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, 1978. [Emeric Deutsch, Jun 18 2010]

Crossrefs

Reflected version of A065941, which is considered the main entry. A deficient version is in A030111.
Cf. A055244. - Gary W. Adamson, Dec 23 2008

Programs

  • GAP
    Flat(List([0..16], n-> List([0..n], k-> Binomial(Int((n+k)/2), k) ))); # G. C. Greubel, Jul 13 2019
  • Haskell
    a046854 n k = a046854_tabl !! n !! k
    a046854_row n = a046854_tabl !! n
    a046854_tabl = [1] : f [1] [1,1] where
       f us vs = vs : f vs  (zipWith (+) (us ++ [0,0]) ([0] ++ vs))
    -- Reinhard Zumkeller, Apr 24 2013
    
  • Magma
    [Binomial(Floor((n+k)/2), k): k in [0..n], n in [0..16]]; // G. C. Greubel, Jul 13 2019
    
  • Maple
    A046854:= proc(n,k): binomial(floor(n/2+k/2), k) end: seq(seq(A046854(n,k),k=0..n),n=0..16); # Nathaniel Johnston, Jun 30 2011
  • Mathematica
    Table[Binomial[Floor[(n+k)/2], k], {n,0,16}, {k,0,n}]//Flatten
    (* next program: Polynomials *)
    z = 12; f[x_, n_] := x + 1/f[x, n - 1]; f[x_, 1] = 1;
    t = Table[Factor[f[x, n]], {n, 1, z}]
    u = Flatten[CoefficientList[Numerator[t], x]] (* this sequence *)
    v = Flatten[CoefficientList[Denominator[t], x]]
    (* Clark Kimberling, Oct 13 2014 *)
  • PARI
    T(n,k) = binomial((n+k)\2, k); \\ G. C. Greubel, Jul 13 2019
    
  • Sage
    [[binomial(floor((n+k)/2), k) for k in (0..n)] for n in (0..16)] # G. C. Greubel, Jul 13 2019
    

Formula

T(n,k) = binomial(floor((n+k)/2), k).
G.f.: (1+x)/(1-x*y-x^2). - Ralf Stephan, Feb 13 2005
Triangle = A097806 * A168561, as infinite lower triangular matrices. - Gary W. Adamson, Oct 28 2007
T(n,k) = A065941(n,n-k) = abs(A130777(n,k)) = abs(A066170(n,k)) = abs(A187660(n,k)). - Johannes W. Meijer, Aug 08 2011
For n > 1: T(n, k) = T(n-1, k-1) + T(n-2, k), 0 < k < n-1. - Reinhard Zumkeller, Apr 24 2013
T(n,k) = A168561(n,k) + A168561(n-1,k). - R. J. Mathar, Feb 10 2024

A001077 Numerators of continued fraction convergents to sqrt(5).

Original entry on oeis.org

1, 2, 9, 38, 161, 682, 2889, 12238, 51841, 219602, 930249, 3940598, 16692641, 70711162, 299537289, 1268860318, 5374978561, 22768774562, 96450076809, 408569081798, 1730726404001, 7331474697802, 31056625195209
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A001076(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 5*b^2 = -1.
a(2*n) with b(2*n) := A001076(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 5*b^2 = +1 (see Emerson reference).
Bisection: a(2*n) = T(n,9) = A023039(n), n >= 0 and a(2*n+1) = 2*S(2*n, 2*sqrt(5)) = A075796(n+1), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
From Greg Dresden, May 21 2023: (Start)
For n >= 2, 8*a(n) is the number of ways to tile this T-shaped figure of length n-1 with four colors of squares and one color of domino; shown here is the figure of length 5 (corresponding to n=6), and it has 8*a(6) = 23112 different tilings.
_
|| _
|||_|||
|_|
(End)

Examples

			1  2  9  38  161  (A001077)
-, -, -, --, ---, ...
0  1  4  17   72  (A001076)
1 + 2*x + 9*x^2 + 38*x^3 + 161*x^4 + 682*x^5 + 2889*x^6 + 12238*x^7 + ... - _Michael Somos_, Aug 11 2009
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. Thébault, Les Récréations Mathématiques, Gauthier-Villars, Paris, 1952, p. 282.

Crossrefs

Programs

  • Magma
    I:=[1, 2]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Maple
    A001077:=(-1+2*z)/(-1+4*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
    with(combinat): a:=n->fibonacci(n+1, 4)-2*fibonacci(n, 4): seq(a(n), n=0..30); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    LinearRecurrence[{4, 1}, {1, 2}, 30]
    Join[{1},Numerator[Convergents[Sqrt[5],30]]] (* Harvey P. Dale, Mar 23 2016 *)
    CoefficientList[Series[(1-2*x)/(1-4*x-x^2), {x, 0, 30}], x] (* G. C. Greubel, Dec 19 2017 *)
    LucasL[3*Range[0,30]]/2 (* Rigoberto Florez, Apr 03 2019 *)
    a[ n_] := LucasL[n, 4]/2; (* Michael Somos, Nov 02 2021 *)
  • PARI
    {a(n) = fibonacci(3*n) / 2 + fibonacci(3*n - 1)}; /* Michael Somos, Aug 11 2009 */
    
  • PARI
    a(n)=if(n<2,n+1,my(t=4);for(i=1,n-2,t=4+1/t);numerator(2+1/t)) \\ Charles R Greathouse IV, Dec 05 2011
    
  • PARI
    x='x+O('x^30); Vec((1-2*x)/(1-4*x-x^2)) \\ G. C. Greubel, Dec 19 2017
    
  • Sage
    [lucas_number2(n,4,-1)/2 for n in range(0, 30)] # Zerinvary Lajos, May 14 2009
    

Formula

G.f.: (1-2*x)/(1-4*x-x^2).
a(n) = 4*a(n-1) + a(n-2), a(0)=1, a(1)=2.
a(n) = ((2 + sqrt(5))^n + (2 - sqrt(5))^n)/2.
a(n) = A014448(n)/2.
Limit_{n->infinity} a(n)/a(n-1) = phi^3 = 2 + sqrt(5). - Gregory V. Richardson, Oct 13 2002
a(n) = ((-i)^n)*T(n, 2*i), with T(n, x) Chebyshev's polynomials of the first kind A053120 and i^2 = -1.
Binomial transform of A084057. - Paul Barry, May 10 2003
E.g.f.: exp(2x)cosh(sqrt(5)x). - Paul Barry, May 10 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*5^k*2^(n-2k). - Paul Barry, Nov 15 2003
a(n) = 4*a(n-1) + a(n-2) when n > 2; a(1) = 1, a(2) = 2. - Alex Vinokur (alexvn(AT)barak-online.net), Oct 25 2004
a(n) = A001076(n+1) - 2*A001076(n) = A097924(n) - A015448(n+1); a(n+1) = A097924(n) + 2*A001076(n) = A097924(n) + 2(A048876(n) - A048875(n)). - Creighton Dement, Mar 19 2005
a(n) = F(3*n)/2 + F(3*n-1) where F() = Fibonacci numbers A000045. - Gerald McGarvey, Apr 28 2007
a(n) = A000032(3*n)/2.
For n >= 1: a(n) = (1/2)*Fibonacci(6*n)/Fibonacci(3*n) and a(n) = integer part of (2 + sqrt(5))^n. - Artur Jasinski, Nov 28 2011
a(n) = Sum_{k=0..n} A201730(n,k)*4^k. - Philippe Deléham, Dec 06 2011
a(n) = A001076(n) + A015448(n). - R. J. Mathar, Jul 06 2012
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(5*k-4)/(x*(5*k+1) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) is the (1,1)-entry of the matrix W^n with W=[2, sqrt(5); sqrt(5), 2]. - Carmine Suriano, Mar 21 2014
From Rigoberto Florez, Apr 03 2019: (Start)
a(n) = A099919(n) + A049651(n) if n > 0.
a(n) = 1 + Sum_{k=0..n-1} L(3*k + 1) if n >= 0, L(n) = n-th Lucas number (A000032). (End)
From Christopher Hohl, Aug 22 2021: (Start)
For n >= 2, a(2n-1) = A079962(6n-9) + A079962(6n-3).
For n >= 1, a(2n) = sqrt(20*A079962(6n-3)^2 + 1). (End)
a(n) = Sum_{k=0..n-2} A168561(n-2,k)*4^k + 2 * Sum_{k=0..n-1} A168561(n-1,k)*4^k, n>0. - R. J. Mathar, Feb 14 2024
a(n) = 4^n*Sum_{k=0..n} A374439(n, k)*(-1/4)^k. - Peter Luschny, Jul 26 2024
From Peter Bala, Jul 08 2025: (Start)
The following series telescope:
Sum_{n >= 1} 1/(a(n) + 5*(-1)^(n+1)/a(n)) = 3/8, since 1/(a(n) + 5*(-1)^(n+1)/a(n)) = b(n) - b(n+1), where b(n) = (1/4) * (a(n) + a(n-1)) / (a(n)*a(n-1)).
Sum_{n >= 1} (-1)^(n+1)/(a(n) + 5*(-1)^(n+1)/a(n)) = 1/8, since 1/(a(n) + 5*(-1)^(n+1)/a(n)) = c(n) + c(n+1), where c(n) = (1/4) * (a(n) - a(n-1)) / (a(n)*a(n-1)). (End)

Extensions

Chebyshev comments from Wolfdieter Lang, Jan 10 2003

A006497 a(n) = 3*a(n-1) + a(n-2) with a(0) = 2, a(1) = 3.

Original entry on oeis.org

2, 3, 11, 36, 119, 393, 1298, 4287, 14159, 46764, 154451, 510117, 1684802, 5564523, 18378371, 60699636, 200477279, 662131473, 2186871698, 7222746567, 23855111399, 78788080764, 260219353691, 859446141837, 2838557779202
Offset: 0

Views

Author

Keywords

Comments

For more information about this type of recurrence follow the Khovanova link and see A086902 and A054413. - Johannes W. Meijer, Jun 12 2010

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006497 n = a006497_list !! n
    a006497_list = 2 : 3 : zipWith (+) (map (* 3) $ tail a006497_list) a006497_list
    -- Reinhard Zumkeller, Feb 19 2011
    
  • Magma
    [ n eq 1 select 2 else n eq 2 select 3 else 3*Self(n-1)+Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 20 2011
    
  • Maple
    a:= n-> (<<0|1>, <1|3>>^n. <<2, 3>>)[1, 1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 26 2018
  • Mathematica
    Table[LucasL[n, 3], {n, 0, 30}] (* Zerinvary Lajos, Jul 09 2009 *)
    LucasL[Range[0, 30], 3] (* Eric W. Weisstein, Apr 17 2018 *)
    LinearRecurrence[{3,1},{2,3},30] (* Harvey P. Dale, Feb 17 2020 *)
  • PARI
    my(x='x+O('x^30)); Vec((2-3*x)/(1-3*x-x^2)) \\ G. C. Greubel, Jul 05 2017
    
  • PARI
    apply( {A006497(n)=[2,3]*([0,1;1,3]^n)[,1]}, [0..30]) \\ M. F. Hasler, Mar 06 2020
  • Sage
    [lucas_number2(n,3,-1) for n in range(0, 30)] # Zerinvary Lajos, Apr 30 2009
    

Formula

G.f.: (2-3*x)/(1-3*x-x^2). - Simon Plouffe in his 1992 dissertation
From Gary W. Adamson, Jun 15 2003: (Start)
a(n) = ((3 + sqrt(13))/2)^n + ((3 - sqrt(13))/2)^n. See bronze mean (A098316).
A006190(n-2) + A006190(n) = a(n-1).
a(n)^2 - 13*A006190(n)^2 = 4(-1)^n. (End)
From Paul Barry, Nov 15 2003: (Start)
E.g.f.: 2*exp(3*x/2)*cosh(sqrt(13)*x/2).
a(n) = 2^(1-n)*Sum_{k=0..floor(n/2)} C(n, 2*k)* (13)^k * 3^(n-2*k).
a(n) = 2*T(n, 3i/2)*(-i)^n with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. (End)
From Hieronymus Fischer, Jan 02 2009: (Start)
fract(((3+sqrt(13))/2)^n) = (1/2)*(1+(-1)^n) - (-1)^n*((3+sqrt(13))/2)^(-n) = (1/2)*(1+(-1)^n) - ((3-sqrt(13))/2)^n.
See A001622 for a general formula concerning the fractional parts of powers of numbers x>1, which satisfy x-x^(-1)=floor(x).
a(n) = round(((3+sqrt(13))/2)^n) for n > 0. (End)
From Johannes W. Meijer, Jun 12 2010: (Start)
a(2n+1) = 3*A097783(n), a(2n) = A057076(n).
a(3n+1) = A041018(5n), a(3n+2) = A041018(5n+3) and a(3n+3) = 2*A041018(5n+4).
Limit_{k -> infinity} a(n+k)/a(k) = (a(n) + A006190(n)*sqrt(13))/2.
Limit_{n -> infinity} a(n)/A006190(n) = sqrt(13).
(End)
a(n) = sqrt(13*(A006190(n))^2 + 4*(-1)^n). - Vladimir Shevelev, Mar 13 2013
G.f.: G(0), where G(k) = 1 + 1/(1 - (x*(13*k-9))/((x*(13*k+4)) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 15 2013
a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 13*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
a(n) = Lucas(n,3), Lucas polynomials, L(n,x), evaluated at x=3. - G. C. Greubel, Jun 06 2019
a(n) = 2 * Sum_{k=0..n-2} A168561(n-2,k)*3^k + 3 * Sum_{k=0..n-1} A168561(n-1,k)*3^k, n>0. - R. J. Mathar, Feb 14 2024
a(n) = 2*A006190(n+1) - 3*A006190(n). - R. J. Mathar, Feb 14 2024
a(2*n+1) = 3 + 3*Sum_{k=1..n} a(2*k). - Greg Dresden and Canran Wang, Jul 11 2024
From Peter Bala, Jul 14 2025: (Start)
The following series telescope (Cf. A000032):
For k >= 1, Sum_{n >= 1} (-1)^((k+1)*(n+1)) * a(2*n*k)/(a((2*n-1)*k)*a((2*n+1)*k)) = 1/a(k)^2.
For positive even k, Sum_{n >= 1} 1/(a(k*n) - (a(k) + 2)/a(k*n)) = 1/(a(k) - 2) and
Sum_{n >= 1} (-1)^(n+1)/(a(k*n) + (a(k) - 2)/a(k*n)) = 1/(a(k) + 2).
For positive odd k, Sum_{n >= 1} 1/(a(k*n) - (-1)^n*(a(2*k) + 2)/a(k*n)) = (a(k) + 2)/(2*(a(2*k) - 2)) and
Sum_{n >= 1} (-1)^(n+1)/(a(k*n) - (-1)^n*(a(2*k) + 2)/a(k*n)) = (a(k) - 2)/(2*(a(2*k) - 2)). (End)

Extensions

Definition completed by M. F. Hasler, Mar 06 2020

A088009 Number of "sets of odd lists", cf. A000262.

Original entry on oeis.org

1, 1, 1, 7, 25, 181, 1201, 10291, 97777, 1013545, 12202561, 151573951, 2173233481, 31758579997, 524057015665, 8838296029291, 164416415570401, 3145357419120721, 65057767274601217, 1391243470549894135, 31671795881695430521, 747996624368605997701
Offset: 0

Views

Author

Vladeta Jovovic, Nov 02 2003

Keywords

Comments

The Brauer algebra has a basis consisting of all graphs on the vertex set {1,...,2n} whose vertices all have degree 1. The multiplication is defined in Halverson and Ram. a(n) is also the number of idempotent basis elements (i.e., those satisfying b^2=b) of the Brauer algebra. - James East, Dec 27 2013
From Peter Bala, Nov 26 2017: (Start)
The sequence terms have the form 6*m + 1 (follows from the recurrence).
a(n+k) = a(n) (mod k) for all n and k. It follows that the sequence a(n) (mod k) is periodic with the exact period dividing k. For example, modulo 10 the sequence becomes 1, 1, 1, 7, 5, 1, 1, 1, 7, 5, ... with exact period 5. (End)

Examples

			From _R. J. Mathar_, Feb 01 2022 (Start):
Examples of partitions of elements {1,2,..n} into sets of lists where each list contains an odd number of elements:
n=1: One set where the element is the list.
n=2: One set where each of the 2 elements is its own list.
n=3: One set where each of the 3 elements is its own list, plus 6=3! sets of a list of all 3 elements.
n=4: One set where each of the 4 elements is its own list, plus 4*3! sets where one (4 choices) element is its own list and the remaining 3 elements are in another list.
n=5: One set where each of the 5 elements is its own list, plus 5!=120 sets where all 5 elements are in the same list, plus binomial(5,2)*3!=60 sets where two elements are in their own lists and the other 3 in a third list. (End)
		

Crossrefs

Programs

  • Maple
    T:= (n, k)-> `if`(n-k mod 2 = 0, binomial((n+k)/2, k), 0):
    a:= n-> n! * add(T(n-1, k-1)/k!, k=0..n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 07 2011
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add((i->
          a(n-i)*binomial(n-1, i-1)*i!)(2*j+1), j=0..(n-1)/2))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Feb 01 2022
  • Mathematica
    a[n_] := SeriesCoefficient[ Exp[x/(1 - x^2) ], {x, 0, n}]*n!; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 24 2015 *)
  • PARI
    x='x+O('x^33);
    Vec(serlaplace(exp(x/(1-x^2))))
    /* Joerg Arndt, Mar 09 2011 */

Formula

E.g.f.: exp(x/(1-x^2)).
a(n) = n!*Sum_{k=1..n} A168561(n-1,k-1)/k!. - Vladimir Kruchinin, Mar 07 2011
E.g.f.: 1 + x/(G(0)-x) where G(k)= (1-x^2)*k + 1+x-x^2 - x*(1-x^2)*(k+1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 02 2012
E.g.f.: 1 + x/(1+x)*(G(0) - 1) where G(k) = 1 + 1/(1+x^2)/(k+1)/(1-x/(x+(1)/G(k+1))), (continued fraction). - Sergei N. Gladkovskii, Feb 04 2013
a(n) ~ 2^(-3/4)*n^(n-1/4)*exp(sqrt(2*n)-n) * (1-11/(24*sqrt(2*n))). - Vaclav Kotesovec, Aug 10 2013
D-finite with recurrence a(n) = a(n-1) + 2*(n-2)*(n-1)*a(n-2) + (n-2)*(n-1)*a(n-3) - (n-4)*(n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Aug 10 2013
E.g.f.: Product_{n >= 1} (1 + x^n)^(phi(n)/n) = Product_{n >= 0} ( (1 + x^(2*n+1))/(1 - x^(2*n+1)) )^( phi(2*n+1)/(4*n + 2) ), where phi(n) = A000010(n) is the Euler totient function. Cf. A066668 and A000262. - Peter Bala, Jan 01 2014
E.g.f.: Product_{k>0} exp(x^(2*k-1)). - Seiichi Manyama, Oct 10 2017

Extensions

Prepended a(0)=1 by Joerg Arndt, Jul 29 2012

A013655 a(n) = F(n+1) + L(n), where F(n) and L(n) are Fibonacci and Lucas numbers, respectively.

Original entry on oeis.org

3, 2, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343, 555, 898, 1453, 2351, 3804, 6155, 9959, 16114, 26073, 42187, 68260, 110447, 178707, 289154, 467861, 757015, 1224876, 1981891, 3206767, 5188658, 8395425, 13584083, 21979508, 35563591, 57543099, 93106690, 150649789, 243756479
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term, same as A001060.
Pisano period lengths same as for A001060. - R. J. Mathar, Aug 10 2012
The beginning of this sequence is the only sequence of four consecutive primes in a Fibonacci-type sequence. - Franklin T. Adams-Watters, Mar 21 2015
(a(2*k), a(2*k+1)) give for k >= 0 the proper positive solutions of one of two families (or classes) of solutions (x, y) of the indefinite binary quadratic form x^2 + x*y - y^2 of discriminant 5 representing 11. The other family of such solutions is given by (x2, y2) = (b(2*k), b(2*k+1)) with b = A104449. See the formula in terms of Chebyshev S polynomials S(n, 3) = A001906(n+1) below, which follows from the fundamental solution (3, 2) by applying positive powers of the automorphic matrix A^k = Matrix([A(k), B(k)], [B(k), A(k+1)]), with A(k) = S(k-1, 3) - S(k-2, 3) and B(k) = S(k-1, 3). See also A089270 with the Alfred Brousseau link with D = 11. - Wolfdieter Lang, May 28 2019
For n>1, a(n) is the number of ways to tile a strip of length n+1 with black and white squares and white dominos, where there must be exactly one black square and it must appear amongst the first three cells. - Greg Dresden and Emma Li, Aug 24 2024

Crossrefs

Programs

  • Magma
    [2*Fibonacci(n-3)+Fibonacci(n): n in [2..41]]; // Vincenzo Librandi, Apr 16 2011
    
  • Magma
    [GeneralizedFibonacciNumber(3, 2, n): n in [0..39]]; // Arkadiusz Wesolowski, Mar 16 2016
    
  • Maple
    with(combinat): a:=n->2*fibonacci(n-1)+fibonacci(n+2): seq(a(n), n=0..40); # Zerinvary Lajos, Oct 05 2007
  • Mathematica
    LinearRecurrence[{1, 1}, {3, 2}, 40] (* or *)
    Table[Fibonacci[n + 1] + LucasL[n], {n, 0, 40}] (* or *)
    Table[Fibonacci[n + 3] + Fibonacci[n - 3] - 3*Fibonacci[n], {n,2,40}] (* Bruno Berselli, Dec 30 2016 *)
  • PARI
    a(n)=([0,1; 1,1]^n*[3;2])[1,1] \\ Charles R Greathouse IV, Sep 24 2015
    
  • PARI
    a(n)=2*fibonacci(n-3) + fibonacci(n) \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = A000045(n+1) + A000032(n).
a(n) = a(n-1) + a(n-2).
a(n) = F(n+3) - F(n-2) for n>1, where F=A000045. - Gerald McGarvey, Jul 10 2004
a(n) = 2*F(n-3) + F(n) for n>1. - Zerinvary Lajos, Oct 05 2007
G.f.: (3-x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = Sum_{k = n-3..n+1} F(k). - Gary Detlefs, Dec 30 2012
a(n) = ((3*sqrt(5)+1)*(((1+sqrt(5))/2)^n)+(3*sqrt(5)-1)*(((1-sqrt(5))/2)^n))/(2*sqrt(5)). - Bogart B. Strauss, Jul 19 2013
a(n) = F(n+3) + F(n-3) - 3*F(n) for n>1. - Bruno Berselli, Dec 29 2016
Bisection: a(2*k) = 3*S(k, 3) - 4*S(k-1, 3), a(2*k+1) = 2*S(k, 3) + S(k-1, 3), for k >= 0, with the Chebyshev S(n, 3) polynomials from A001906(n+1) for n >= -1. - Wolfdieter Lang, May 28 2019
a(3n + 2)/a(3n - 1) = continued fraction 4,4,4,...,4,-5 (that's n 4's followed by a single -5). - Greg Dresden and Shaoxiong Yuan, Jul 16 2019
E.g.f.: ((- 1 + 3*sqrt(5))*exp((1/2)*(1 - sqrt(5))*x) + (1 + 3*sqrt(5))*exp((1/2)*(1 + sqrt(5))*x))/(2*sqrt(5)). - Stefano Spezia, Jul 17 2019
a(n) = (F(3n+1) - F(n+1)^3)/(F(n)^2) for n>1, where F(n) = A000045(n). - Michael Tulskikh, Jul 22 2020
a(n) = 3 * Sum_{k=0..n-2} A168561(n-2,k) + 2 * Sum_{k=0..n-1} A168561(n-1,k), n>0. - R. J. Mathar, Feb 14 2024

Extensions

Definition corrected by Gary Detlefs, Dec 30 2012

A052924 Expansion of g.f.: (1-x)/(1 - 3*x - x^2).

Original entry on oeis.org

1, 2, 7, 23, 76, 251, 829, 2738, 9043, 29867, 98644, 325799, 1076041, 3553922, 11737807, 38767343, 128039836, 422886851, 1396700389, 4612988018, 15235664443, 50319981347, 166195608484, 548906806799, 1812916028881
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Euler encountered this sequence when finding the largest root of z^2 - 3z - 1 = 0. - V. Frederick Rickey (fred-rickey(AT)usma.edu), Aug 20 2003
Let M = a triangle with the Pell series A000129 (1, 2, 5, 12, ...) in each column, with the leftmost column shifted upwards one row. A052924 starting (1, 2, 7, 23, ...) = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 31 2010
a(n) is the number of compositions of n when there are 2 types of 1 and 3 types of other natural numbers. - Milan Janjic, Aug 13 2010
Equals partial sums of A108300 prefaced with a 1: (1, 1, 5, 16, 53, 175, 578, ...). - Gary W. Adamson, Feb 15 2012

References

  • L. Euler, Introductio in analysin infinitorum, 1748, section 338. English translation by John D. Blanton, Introduction to Analysis of the Infinite, 1988, Springer, p. 286.

Crossrefs

A108300 (first differences), A006190 (partial sums), A355981 (primes).

Programs

  • GAP
    a:=[1,2];; for n in [3..30] do a[n]:=3*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Jun 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1-3*x-x^2) )); // G. C. Greubel, Jun 09 2019
    
  • Maple
    spec:= [S,{S=Sequence(Prod(Sequence(Z),Union(Z,Z,Prod(Z,Z))))}, unlabeled]: seq(combstruct[count](spec,size=n), n=0..30);
    seq(coeff(series((1-x)/(1-3*x-x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 16 2019
  • Mathematica
    CoefficientList[Series[(1-x)/(1-3*x-x^2), {x,0,30}], x] (* G. C. Greubel, Jun 09 2019 *)
  • PARI
    Vec((1-x)/(1-3*x-x^2)+O(x^30)) \\ Charles R Greathouse IV, Nov 20 2011
    
  • Sage
    ((1-x)/(1-3*x-x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 09 2019
    

Formula

a(n) = 3*a(n-1) + a(n-2).
a(n) = Sum_{alpha=RootOf(-1+3*x+x^2)} (1/13)*(1+5*alpha)*alpha^(-1-n).
With offset 1: a(1)=1; for n > 1, a(n) = Sum_{i=1..3*n-4} a(ceiling(i/3)). - Benoit Cloitre, Jan 04 2004
Binomial transform of A006130. a(n) = (1/2 - sqrt(13)/26)*(3/2 - sqrt(13)/2)^n + (1/2 + sqrt(13)/26)*(3/2 + sqrt(13)/2)^n. - Paul Barry, Jul 20 2004
From Creighton Dement, Nov 04 2004: (Start)
a(n) = A006190(n+1) - A006190(n);
4*a(n) = 9*A006190(n+1) - A006497(n+1) - 2*A003688(n+1). (End)
Numerators in continued fraction [1, 2, 3, 3, 3, ...], where the latter = 0.69722436226...; the length of an inradius of a right triangle with legs 2 and 3. - Gary W. Adamson, Dec 19 2007
If p[1]=2, p[i]=3, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i<=j), A[i,j] = -1, (i=j+1), and A[i,j]=0 otherwise. Then, for n >= 1, a(n-1) = det A. - Milan Janjic, Apr 29 2010
a(n) = A006190(n) + A003688(n). - R. J. Mathar, Jul 06 2012
a(n) = Sum_{k=0..n-2} A168561(n-2,k)*3^k + 2 * Sum_{k=0..n-1} A168561(n-1,k)*3^k, n>0. - R. J. Mathar, Feb 14 2024
From Peter Bala, Jul 08 2025: (Start)
The following series telescope:
Sum_{n >= 1} 1/(a(n) + 3*(-1)^(n+1)/a(n)) = 1/2, since 1/(a(n) + 3*(-1)^(n+1)/a(n)) = b(n) - b(n+1), where b(n) = (1/3) * (a(n) + a(n-1)) / (a(n)*a(n-1)).
Sum_{n >= 1} (-1)^(n+1)/(a(n) + 3*(-1)^(n+1)/a(n)) = 1/6, since 1/(a(n) + 3*(-1)^(n+1)/a(n)) = c(n) + c(n+1), where c(n) = (1/3) * (a(n) - a(n-1)) / (a(n)*a(n-1)). (End)

Extensions

More terms from James Sellers, Jun 06 2000
Showing 1-10 of 29 results. Next