Original entry on oeis.org
2, 7, 23, 251, 829, 9043, 29867, 38767343, 422886851, 65315297021063, 924799285908242999, 122759999090351161707303101641950043, 886664361994756976062881640589803447737545663, 2163095322339829235736053464677362677820481059595235042725493776163807, 101154989700155341084064421509561811174544605210604335552565522072629352799
Offset: 1
-
Select[LinearRecurrence[{3, 1}, {1, 2}, 200], PrimeQ] (* Paolo Xausa, Mar 19 2024 *)
A001077
Numerators of continued fraction convergents to sqrt(5).
Original entry on oeis.org
1, 2, 9, 38, 161, 682, 2889, 12238, 51841, 219602, 930249, 3940598, 16692641, 70711162, 299537289, 1268860318, 5374978561, 22768774562, 96450076809, 408569081798, 1730726404001, 7331474697802, 31056625195209
Offset: 0
1 2 9 38 161 (A001077)
-, -, -, --, ---, ...
0 1 4 17 72 (A001076)
1 + 2*x + 9*x^2 + 38*x^3 + 161*x^4 + 682*x^5 + 2889*x^6 + 12238*x^7 + ... - _Michael Somos_, Aug 11 2009
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- V. Thébault, Les Récréations Mathématiques, Gauthier-Villars, Paris, 1952, p. 282.
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242, Ex. 1, pp. 237-238.
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,1).
Cf.
A000032,
A001076,
A023039,
A049629,
A052924,
A078343,
A164581,
A179237,
A180148,
A329723,
A374439.
-
I:=[1, 2]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
-
A001077:=(-1+2*z)/(-1+4*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
with(combinat): a:=n->fibonacci(n+1, 4)-2*fibonacci(n, 4): seq(a(n), n=0..30); # Zerinvary Lajos, Apr 04 2008
-
LinearRecurrence[{4, 1}, {1, 2}, 30]
Join[{1},Numerator[Convergents[Sqrt[5],30]]] (* Harvey P. Dale, Mar 23 2016 *)
CoefficientList[Series[(1-2*x)/(1-4*x-x^2), {x, 0, 30}], x] (* G. C. Greubel, Dec 19 2017 *)
LucasL[3*Range[0,30]]/2 (* Rigoberto Florez, Apr 03 2019 *)
a[ n_] := LucasL[n, 4]/2; (* Michael Somos, Nov 02 2021 *)
-
{a(n) = fibonacci(3*n) / 2 + fibonacci(3*n - 1)}; /* Michael Somos, Aug 11 2009 */
-
a(n)=if(n<2,n+1,my(t=4);for(i=1,n-2,t=4+1/t);numerator(2+1/t)) \\ Charles R Greathouse IV, Dec 05 2011
-
x='x+O('x^30); Vec((1-2*x)/(1-4*x-x^2)) \\ G. C. Greubel, Dec 19 2017
-
[lucas_number2(n,4,-1)/2 for n in range(0, 30)] # Zerinvary Lajos, May 14 2009
A006189
Number of self-avoiding walks of any length from NW to SW corners of a grid or lattice with n rows and 3 columns.
Original entry on oeis.org
1, 1, 3, 11, 38, 126, 415, 1369, 4521, 14933, 49322, 162900, 538021, 1776961, 5868903, 19383671, 64019918, 211443426, 698350195, 2306494009, 7617832221, 25159990673, 83097804242, 274453403400, 906458014441, 2993827446721, 9887940354603, 32657648510531
Offset: 0
- H. L. Abbott and D. Hanson, A lattice path problem, Ars Combin., 6 (1978), 163-178.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..100
- H. L. Abbott and D. Hanson, A lattice path problem, Ars Combin., 6 (1978), 163-178. (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (4,-3,2,1).
Cf.
A216211 (grids with 4 columns).
-
I:=[1,3,11,38]; [1] cat [n le 4 select I[n] else 4*Self(n-1) -3*Self(n-2) +2*Self(n-3) +Self(n-4): n in [1..41]]; // G. C. Greubel, May 24 2021
-
LinearRecurrence[{4,-3,2,1}, {1,1,3,11,38}, 100] (* Jean-François Alcover, Oct 08 2017 *)
With[{U = ChebyshevU}, Table[(1/2)*(U[n, 1/2] -U[n-1, 1/2] + I^n*(U[n, -3*I/2] + I*U[n-1, -3*I/2]) ), {n, 0, 40}]] (* G. C. Greubel, May 24 2021 *)
-
Vec((1-x)*(1-2*x)/((1-x+x^2)*(1-3*x-x^2)) + O(x^40)) \\ Colin Barker, Nov 17 2017
-
u=chebyshev_U;
[(1/2)*( u(n, 1/2) - u(n-1, 1/2) + i^n*(u(n, -3*i/2) + i*u(n-1, -3*i/2)) ) for n in (0..30)] # G. C. Greubel, May 24 2021
Based on upper-left to lower-left path-counting program, more terms from
Toby Gottfried, Mar 04 2013
Name clarified, offset changed, a(16)-a(25) from
Andrew Howroyd, Apr 07 2016
A108300
a(n+2) = 3*a(n+1) + a(n), with a(0) = 1, a(1) = 5.
Original entry on oeis.org
1, 5, 16, 53, 175, 578, 1909, 6305, 20824, 68777, 227155, 750242, 2477881, 8183885, 27029536, 89272493, 294847015, 973813538, 3216287629, 10622676425, 35084316904, 115875627137, 382711198315, 1264009222082, 4174738864561, 13788225815765, 45539416311856
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Sergio Falcon, The k-Fibonacci difference sequences, Chaos, Solitons & Fractals, Volume 87, June 2016, Pages 153-157.
- Tanya Khovanova, Recursive Sequences
- Vincent Vatter, Growth rates of permutation classes: from countable to uncountable, arXiv:1605.04297 [math.CO], 2016. (Mentions a signed version.)
- Index entries for linear recurrences with constant coefficients, signature (3,1).
-
seriestolist(series((-2*x-1)/(x^2-1+3*x), x=0,25));
-
LinearRecurrence[{3,1},{1,5},40] (* Harvey P. Dale, Jul 04 2013 *)
-
Vec((1 + 2*x)/(1 - 3*x - x^2) + O(x^30)) \\ Andrew Howroyd, Jun 05 2021
A193723
Mirror of the fusion triangle A193722.
Original entry on oeis.org
1, 2, 1, 6, 5, 1, 18, 21, 8, 1, 54, 81, 45, 11, 1, 162, 297, 216, 78, 14, 1, 486, 1053, 945, 450, 120, 17, 1, 1458, 3645, 3888, 2295, 810, 171, 20, 1, 4374, 12393, 15309, 10773, 4725, 1323, 231, 23, 1, 13122, 41553, 58320, 47628, 24948, 8694, 2016, 300, 26, 1
Offset: 0
First six rows:
1;
2, 1;
6, 5, 1;
18, 21, 8, 1;
54, 81, 45, 11, 1;
162, 297, 216, 78, 14, 1;
-
z = 9; a = 1; b = 1; c = 1; d = 2;
p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193722 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193723 *)
A213892
Fixed points of a sequence h(n) defined by the minimum number of 3's in the relation n*[n,3,3,...,3,n] = [x,...,x] between simple continued fractions.
Original entry on oeis.org
2, 7, 19, 31, 47, 67, 71, 83, 151, 163, 167, 223, 227, 271, 307, 331, 359, 379, 431, 463, 479, 487, 499, 631, 643, 683, 691, 743, 787, 811, 839, 863, 947, 967, 1019, 1051, 1087, 1103, 1123, 1163, 1259, 1279, 1307, 1319, 1399, 1423, 1451, 1471
Offset: 1
-
f[m_, n_] := Block[{c, k = 1}, c[x_, y_] := ContinuedFraction[x FromContinuedFraction[Join[{x}, Table[m, {y}], {x}]]]; While[First@ c[n, k] != Last@ c[n, k], k++]; k]; Select[Range[2, 1000], f[3, #] == # &] (* Michael De Vlieger, Sep 16 2015 *)
-
{a(n) = local(t, m=1); if( n<2, 0, while( 1,
t = contfracpnqn( concat([n, vector(m,i,3), n]));
t = contfrac(n*t[1,1]/t[2,1]);
if(t[1]
A164581
a(n) = 5*a(n - 1) + a(n - 2), with a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 11, 57, 296, 1537, 7981, 41442, 215191, 1117397, 5802176, 30128277, 156443561, 812346082, 4218173971, 21903215937, 113734253656, 590574484217, 3066606674741, 15923607857922, 82684645964351, 429346837679677, 2229418834362736, 11576441009493357
Offset: 0
-
[ n le 2 select (n) else 5*Self(n-1)+Self(n-2): n in [1..25] ]; // Vincenzo Librandi, Sep 12 2013
-
LinearRecurrence[{5, 1}, {1, 2}, 40] (* or *) Rest[CoefficientList[Series [x (1 - 3 x) / (1 - 5 x - x^2), {x, 0, 40}], x]] (* Harvey P. Dale, May 02 2011 *)
-
Vec((1-3*x)/(1-5*x-x^2) + O(x^40)) \\ Colin Barker, Oct 13 2015
A100229
Triangle, read by rows, of the coefficients of [x^k] in G100228(x)^n such that the row sums are 4^n-1 for n>0, where G100228(x) is the g.f. of A100228.
Original entry on oeis.org
1, 1, 2, 1, 4, 10, 1, 6, 21, 35, 1, 8, 36, 92, 118, 1, 10, 55, 185, 380, 392, 1, 12, 78, 322, 879, 1506, 1297, 1, 14, 105, 511, 1715, 3948, 5803, 4286, 1, 16, 136, 760, 3004, 8536, 17020, 21904, 14158, 1, 18, 171, 1077, 4878, 16344, 40395, 71109, 81387, 46763
Offset: 0
Rows begin:
[1],
[1,2],
[1,4,10],
[1,6,21,35],
[1,8,36,92,118],
[1,10,55,185,380,392],
[1,12,78,322,879,1506,1297],
[1,14,105,511,1715,3948,5803,4286],
[1,16,136,760,3004,8536,17020,21904,14158],...
where row sums form 4^n-1 for n>0:
4^1-1 = 1+2 = 3
4^2-1 = 1+4+10 = 15
4^3-1 = 1+6+21+35 = 63
4^4-1 = 1+8+36+92+118 = 255
4^5-1 = 1+10+55+185+380+392 = 1023.
The main diagonal forms A100230 = [1,2,10,35,118,392,1297,...],
where Sum_{n>=1} A100230(n)/n*x^n = log((1-x)/(1-3*x-x^2)).
A110522
Riordan array (1/(1+x), x*(1-2*x)/(1+x)^2).
Original entry on oeis.org
1, -1, 1, 1, -5, 1, -1, 12, -9, 1, 1, -22, 39, -13, 1, -1, 35, -115, 82, -17, 1, 1, -51, 270, -344, 141, -21, 1, -1, 70, -546, 1106, -773, 216, -25, 1, 1, -92, 994, -2954, 3199, -1466, 307, -29, 1, -1, 117, -1674, 6888, -10791, 7461, -2487, 414, -33, 1, 1, -145, 2655, -14484, 31179, -30645, 15060, -3900, 537, -37, 1
Offset: 0
Rows begin
1;
-1, 1;
1, -5, 1;
-1, 12, -9, 1;
1, -22, 39, -13, 1;
-1, 35, -115, 82, -17, 1;
-
A110522:= func< n,k | (-1)^(n+k)*(&+[ 3^(j-k)*Binomial(k,j-k)*Binomial(n,j) : j in [0..n]] ) >;
[A110522(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 28 2023
-
T[n_,k_]:= Sum[(-1)^(n-j)*(-3)^(j-k)*Binomial[k, j- k]*Binomial[n, j], {j,0,n}];
Table[T[n,k], {n,0,20}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 30 2017 *)
-
A110522(n,k) = if(n==0, 1, sum(j=0,n, (-1)^(n-j)*(-3)^(j-k)*binomial(n,j)*binomial(k, j-k)));
for(n=0,12, for(k=0,n, print1(A110522(n,k), ", "))) \\ G. C. Greubel, Aug 30 2017; Dec 28 2023
-
def A110522(n,k): return (-1)^(n+k)*sum(3^(j-k)*binomial(k,j-k)*binomial(n,j) for j in range(n+1))
flatten([[A110522(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 28 2023
A249579
List of quadruples (r,s,t,u): the matrix M = [[4,12,9][2,5,3][1,2,1]] is raised to successive powers, then (r,s,t,u) are the square roots of M[3,1], M[3,3], M[1,1], M[1,3] respectively.
Original entry on oeis.org
0, 1, 1, 0, 1, 1, 2, 3, 3, 4, 7, 9, 10, 13, 23, 30, 33, 43, 76, 99, 109, 142, 251, 327, 360, 469, 829, 1080, 1189, 1549, 2738, 3567, 3927, 5116, 9043, 11781, 12970, 16897, 29867, 38910, 42837, 55807, 98644, 128511, 141481, 184318, 325799, 424443, 467280
Offset: 0
M^0 = [[1,0,0][0,1,0][0,0,1]]: r = sqrt(M[3,1]) = a(0) = 0, s = sqrt(M[3,3]) = a(1) = 1, t = sqrt(M[1,1]) = a(2) = 1, u = sqrt(M[1,3])u = a(3) = 0.
M^2 = [[49, 126, 81][21, 55, 36][9, 24, 16]]: r = sqrt(M[3, 1]) = a(8) = 3, s = sqrt(M[3, 3]) = a(9) = 4, t = sqrt(M[1, 1]) = a(10) = 7, u = sqrt(M[1, 3]) = a(11) = 9.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,1).
-
I:=[0,1,1,0,1,1,2,3]; [n le 8 select I[n] else 3*Self(n-4)+Self(n-8): n in [1..50]]; // Vincenzo Librandi, Nov 14 2014
-
CoefficientList[Series[- x (3 x^6 - x^5 - 2 x^4 + x^3 + x + 1) / (x^8 + 3 x^4 - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 14 2014 *)
-
concat(0, Vec(-x*(3*x^6-x^5-2*x^4+x^3+x+1)/(x^8+3*x^4-1) + O(x^100))) \\ Colin Barker, Nov 13 2014
Showing 1-10 of 15 results.
Comments