Carmine Suriano has authored 156 sequences. Here are the ten most recent ones:
A355554
Sexagesimal expansion of 180/Pi.
Original entry on oeis.org
57, 17, 44, 48, 22, 29, 22, 22, 7, 32, 46, 14, 58, 15, 20, 17, 32, 7, 4, 43, 35, 36, 12, 35, 9, 17, 4, 12, 9, 40, 27, 27, 26, 48, 25, 12, 52, 48, 52, 18, 21, 42, 13, 53, 32, 25, 44, 46, 54, 25, 56, 34, 21, 51, 6, 35, 33, 34, 49, 6, 43, 10, 36, 31, 50, 20, 31
Offset: 1
a(3) = floor((((180/Pi-57)*60)-17)*60) = 44.
A272376
Twin primes both of which are the sum of three positive cubes.
Original entry on oeis.org
2267, 2269, 3527, 3529, 10331, 10333, 14867, 14869, 17207, 17209, 18521, 18523, 18917, 18919, 20231, 20233, 20357, 20359, 25577, 25579, 27791, 27793, 28547, 28549, 31247, 31249, 35279, 35281, 36899, 36901, 40697, 40699, 44279, 44281, 48779, 48781, 51479, 51481
Offset: 1
3527 and 3529 are terms since 3527=3^3+5^3+15^3 and 3529=1^3+11^3+13^3.
-
cu[n_] := {}!=Quiet@ IntegerPartitions[n,{3},Range[n^(1/3)]^3, 1]; Flatten@ Rest@ Reap@ Do[If[ PrimeQ[p+2] && cu[p] && cu[p+2], Sow[{p, p+2}]], {p, Prime@ Range@ 10000}] (* Giovanni Resta, Apr 28 2016 *)
-
list(lim)=my(v=List(), k, t); lim\=1; for(x=1, sqrtnint(lim-2, 3), for(y=1, min(sqrtnint(lim-x^3-1, 3), x), k=x^3+y^3; for(z=1, min(sqrtnint(lim-k, 3), y), if(isprime(t=k+z^3), listput(v, t))))); v=Set(v); for(i=2,#v-1,if(v[i]!=v[i-1]+2 && v[i]!=v[i+1]-2, v[i]=0)); v=Set(v); v[3..#v] \\ Charles R Greathouse IV, Apr 29 2016
A254226
Numbers n such that the n-th decimal digit of e = 1 + the n-th decimal digit of Pi.
Original entry on oeis.org
25, 28, 31, 35, 40, 61, 73, 107, 114, 130, 135, 138, 148, 151, 152, 170, 188, 192, 195, 202, 209, 218, 222, 231, 234, 238, 263, 265, 290, 297, 315, 378, 423, 432, 436, 444, 448, 457, 470, 481, 485, 489, 490, 526, 537, 546
Offset: 1
31 is in the sequence since the 31st decimal digit of e is 6 and the 31st decimal digit of Pi is 5.
-
nn = 550; rdpi = RealDigits[Pi, 10, nn][[1]]; rde = RealDigits[E, 10, nn][[1]]; Select[ Range[2, nn], 1 + rdpi[[#]] == rde[[#]] &] - 1 (* Robert G. Wilson v, Feb 08 2015 *)
A254227
Numbers such that the n-th decimal digit of Pi is one larger than the n-th decimal digit of e.
Original entry on oeis.org
5, 6, 10, 19, 26, 56, 78, 82, 96, 111, 126, 127, 160, 166, 172, 174, 216, 220, 227, 240, 242, 246, 249, 250, 272, 276, 286, 299, 314, 332, 339, 346, 351, 352, 358, 362, 365, 372, 382, 396, 402, 405, 425, 430, 442, 468, 474, 486, 487, 502
Offset: 1
a(2) = 6 since the 6th decimal digit of Pi is 2 and the 6th decimal digit of e is 1.
-
max = 510; piDigits = RealDigits[Pi, 10, max][[1]]; eDigits = RealDigits[E, 10, max][[1]]; Select[Range[2, max], piDigits[[#]] == 1 + eDigits[[#]] &] - 1 (* Robert G. Wilson v, Feb 08 2015 *)
A254836
Numbers n expressible as a product of 4 factors in two different ways, n = a*b*c*d = x*y*w*z, with a+b+c+d = x+y+w+z.
Original entry on oeis.org
36, 40, 48, 72, 80, 90, 96, 108, 120, 126, 144, 160, 168, 176, 180, 192, 200, 216, 225, 234, 240, 252, 270, 280, 288, 297, 300, 320, 324, 336, 352, 360, 378, 384, 396, 400, 405, 408, 420, 432, 440, 448, 450, 456, 468, 480
Offset: 1
40 is in the list since 40 = 1*1*5*8 = 1*2*2*10 and 1+1+5+8 = 15 = 1+2+2+10.
-
fQ[n_] := If[ PrimeOmega@ n > 3, Block[{k = 1}, While[k < n && Length@ Select[ IntegerPartitions[k, {4}, Divisors@ n], Times @@ # == n &] < 2, k++]; If[k < 2n, True]]]; k = 1; lst = {}; While[k < 500, If[ fQ@ k, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Feb 09 2015 *)
A253408
Values of difference z-y that solve equation x^2 + y^2 = z^2 + 2.
Original entry on oeis.org
-1, 1, 7, 17, 23, 31, 41, 47, 49, 71, 73, 79, 89, 97, 103, 113, 119, 127, 137, 151, 161, 167, 191, 193, 199, 217, 223, 233, 239, 241, 257, 263, 271, 281, 287, 289, 311, 313, 329, 337, 343, 353, 359, 367, 383, 391, 401, 409, 431, 433, 439, 449, 457, 463, 479, 487
Offset: 1
a(3)=7 because 25^2 + 41^2 = 48^2 + 2 and 48 - 41 = 7.
A246666
Numbers n such that n^3 + (n+1)^3 + (n+3)^3 is prime.
Original entry on oeis.org
1, 3, 5, 9, 31, 43, 45, 51, 71, 89, 135, 141, 145, 149, 159, 163, 169, 183, 185, 225, 233, 241, 255, 261, 271, 281, 283, 285, 299, 309, 311, 313, 355, 395, 401, 411, 415, 423, 429, 435, 449, 453, 485, 491, 541, 551, 561, 579, 583, 589, 603, 621, 625, 635, 681
Offset: 1
a(5)=31 since 31^3+(31+1)^3+(31+3)^3=101863 is prime.
-
isA246666 := proc (n) return isprime(n^3+(n+1)^3+(n+3)^3) end proc; seq(`if`(isA246666(2*n-1), 2*n-1, NULL), n = 1 .. 400); # Nathaniel Johnston, Sep 09 2014
-
for(n=0,10^3,if(isprime(n^3+(n+1)^3+(n+3)^3),print1(n,", "))); \\ Joerg Arndt, Sep 09 2014
-
from sympy import isprime
A246666_list = [n for n in range(1,10**5) if isprime(3*n*(n*(n+4)+10)+28)]
# Chai Wah Wu, Sep 09 2014
A242538
Squares that are sum of digits of factorials.
Original entry on oeis.org
1, 9, 36, 81, 144, 225, 324, 441, 729, 1089, 1296, 2025, 2304, 2601, 2916, 3249, 3600, 3969, 4356, 4761, 6561, 7056, 7569, 8100, 8649, 9216, 9801, 10404, 11025, 11664, 12996, 13689, 15129, 16641, 17424, 20736, 22500, 23409, 26244, 29241
Offset: 1
a(5)=144 for 33!=8683317618811886495518194401280000000 whose sum of digits is 144=12^2. a(5) is also originated from 34! and 35!.
-
Union[Select[Total[IntegerDigits[#]]&/@(Range[2500]!),IntegerQ[Sqrt[#]]&]] (* Harvey P. Dale, Feb 20 2015 *)
-
lista(nn) = {v = vector(nn, n, sumdigits(n!)); Set(select(x->issquare(x), v));} \\ Michel Marcus, May 18 2014
A242130
Sum of squares of three numbers x, y, z such that 3*floor(sum of squares/3) = x+y+z.
Original entry on oeis.org
3, 12, 14, 18, 27, 29, 33, 35, 41, 48, 50, 54, 56, 62, 66, 72, 74, 75, 77, 81, 83, 89, 93, 99, 101, 107, 108, 110, 114, 116, 122, 126, 132, 134, 140, 146, 147, 149, 153, 155, 161, 165, 171, 173, 179, 185, 189, 192, 194, 198, 200
Offset: 1
a(7)=33 for 33=1^2+4^2+4^2; floor(sqrt(33/3))=3; 3*3=9=1+4+4.
A239064
Positive integers whose square can be expressed as k*x^2+(k+1)*x+(k+2) with k and x positive integers.
Original entry on oeis.org
3, 5, 6, 9, 10, 12, 15, 16, 18, 19, 21, 23, 24, 26, 27, 30, 33, 36, 37, 39, 40, 41, 42, 44, 45, 47, 48, 51, 52, 54, 57, 58, 60, 61, 63, 64, 65, 66, 67, 68, 69, 72, 75, 78, 79, 81, 82, 83, 84, 86, 87, 89, 90, 92, 93, 96, 99, 100, 102, 103, 105, 107, 108, 110, 111, 114, 117, 120, 121, 123, 124, 126, 128, 129, 130, 131, 132, 134, 135, 138, 141, 142, 144, 145, 147, 149, 150, 152, 153, 156, 159, 162, 163, 165, 166, 168, 170, 171, 173, 174, 176, 177, 180, 183, 184, 186, 187, 189, 191, 192, 194, 195, 196, 198, 201, 204
Offset: 1
a(10)=19 from 19^2=361=51*2^2+(51+1)*2+(51+2).
From _Wolfdieter Lang_, Apr 21 2014: (Start)
k = 2: There are two proper solutions of 2*X^2 - Y^2 = 23, namely [4, 3], [6, 7]. Both generate infinitely many new solutions, all with even X, namely [4, 3], [18, 25], [104, 147], [606, 857],[3532, 4995], [20586, 29113], ... and [6, 7], [32, 45], [186, 263], [1084, 1533],[6318, 8935], [36824, 52077], ... . Only every other solution has 2*k = 4 dividing Y - (2+1) = Y-3, giving the positive solutions for (a=X/2, b=Y; x), starting with the second proper solution and then alternating between the two sets of solutions (3, 7; 1), (52, 147; 36), (93, 263; 65), (1766, 4995; 1248), (3159, 8935; 2233), ... . Thus the positive x solutions for k = 2 are 1, 36, 65, 1248, 2233, ..., with a = 3, 52, 93, 1766, 3159, ... .
k = 3: the positive solutions for x are 2, 5, 38, 79, 538, 1109, ..., with a = 5, 10, 67, 138, 933, 1922, ..., coming from the even X solutions of 3*X^2 - Y^2 = 44, [4, 2], [10, 16], [36, 62], [134, 232], [500, 866], [1866, 3232], ... and [6, 8], [20, 34], [74, 128], [276, 478], [1030, 1784], [3844, 6658], ... . Then 2*k = 6 has to divide Y - 4, leaving every other of these solutions with (a = X/2, b=Y; x) given by (5, 16; 2), (10, 34; 5), (67, 232; 38), (138, 478; 79), (933, 3232; 538), (1922, 6658; 1109), ... .
k = 5: there are no solutions of 5*X^2 - Y2 = 104.
k = 6: there are no solutions of 6*X^2 - Y2 = 143.
(End)
- D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989.
Edited, name specified, comment changed, reference and link added by
Wolfdieter Lang, Apr 21 2014
Comments