Russell Walsmith has authored 25 sequences. Here are the ten most recent ones:
A254308
a(n) = a(n-1) + (if a(n-1) is odd a(n-2) else a(n-3)) with a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 1, 2, 3, 5, 8, 11, 19, 30, 41, 71, 112, 153, 265, 418, 571, 989, 1560, 2131, 3691, 5822, 7953, 13775, 21728, 29681, 51409, 81090, 110771, 191861, 302632, 413403, 716035, 1129438, 1542841, 2672279, 4215120, 5757961, 9973081, 15731042, 21489003, 37220045
Offset: 0
For n = 7, a(n-1) is even so 8 + 3 = 11.
G.f. = x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 11*x^7 + 19*x^8 + 30*x^9 + ...
-
a254308 n = a254308_list !! n
a254308_list = 0 : 1 : 1 : zipWith3 (\u v w -> u + if odd u then v else w)
(drop 2 a254308_list) (tail a254308_list) a254308_list
-- Reinhard Zumkeller, Feb 24 2015
-
m:=60; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x+2*x^2-x^3+x^4)/(1-4*x^3+x^6))); // G. C. Greubel, Aug 03 2018
-
CoefficientList[Series[x*(1+x+2*x^2-x^3+x^4)/(1-4*x^3+x^6), {x, 0, 60}], x] (* G. C. Greubel, Aug 03 2018 *)
nxt[{a_,b_,c_}]:={b,c,If[OddQ[c],c+b,c+a]}; NestList[nxt,{0,1,1},50][[All,1]] (* or *) LinearRecurrence[{0,0,4,0,0,-1},{0,1,1,2,3,5},50] (* Harvey P. Dale, May 12 2022 *)
-
{a(n) = polcoeff( x * if( n<0, n=-n; -(1 - x + 2*x^2 + x^3 + x^4), (1 + x + 2*x^2 - x^3 + x^4)) / (1 - 4*x^3 + x^6) + x * O(x^n), n)}; /* Michael Somos, Feb 23 2015 */
A249580
List of quadruples (r,s,t,u): the matrix M = [[4,12,9][2,5,3][1,2,1]] is raised to successive negative powers, then (r,s,t,u) are the square roots of M[1,3], M[1,1], M[3,3], M[3,1] respectively.
Original entry on oeis.org
3, -1, -2, 1, -9, 4, 7, -3, 30, -13, -23, 10, -99, 43, 76, -33, 327, -142, -251, 109, -1080, 469, 829, -360, 3567, -1549, -2738, 1189, -11781, 5116, 9043, -3927, 38910, -16897, -29867, 12970, -128511, 55807, 98644, -42837
Offset: 1
M^-1 = [[1,-6,9][-1,5,-6][1,-4,4]]. sqrt(M[1,3]) = 3, sqrt(M[1,1]) = -1, sqrt(M[3,3]) = -2, sqrt(M[3,1]) = 1. Then r = 3; s = -1; t = -2; ; u = 1.
M^-2 = [[16,-72,81][-12,55,-63][9,-42,49]]. sqrt(M[1,3]) = -9, sqrt(M[1,1]) = 4, sqrt(M[3,3]) = 7, sqrt(M[3,1]) = -3. Then r = -9; s = 4; t = 7; ; u = -3.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Russell Walsmith, A sequence of matrices
- Russell Walsmith, DCL-Chemy III: Hyper-Quadratics
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,-3,0,0,0,1).
-
m[e_] := MatrixPower[{{4, 12, 9}, {2, 5, 3}, {1, 2, 1}}, -e]; g[e_, x_, y_] := (-1)^If[x == y, e, e + 1] Sqrt@ m[e][[x, y]]; f[e_] := {g[e, 1, 3], g[e, 1, 1], g[e, 3, 3], g[e, 3, 1]}; Array[f, 10] // Flatten (* Robert G. Wilson v, Dec 19 2014 *)
-
Vec(-x*(x^6+x^5+x^3-2*x^2-x+3)/(x^8-3*x^4-1) + O(x^100)) \\ Colin Barker, Nov 06 2014
A249579
List of quadruples (r,s,t,u): the matrix M = [[4,12,9][2,5,3][1,2,1]] is raised to successive powers, then (r,s,t,u) are the square roots of M[3,1], M[3,3], M[1,1], M[1,3] respectively.
Original entry on oeis.org
0, 1, 1, 0, 1, 1, 2, 3, 3, 4, 7, 9, 10, 13, 23, 30, 33, 43, 76, 99, 109, 142, 251, 327, 360, 469, 829, 1080, 1189, 1549, 2738, 3567, 3927, 5116, 9043, 11781, 12970, 16897, 29867, 38910, 42837, 55807, 98644, 128511, 141481, 184318, 325799, 424443, 467280
Offset: 0
M^0 = [[1,0,0][0,1,0][0,0,1]]: r = sqrt(M[3,1]) = a(0) = 0, s = sqrt(M[3,3]) = a(1) = 1, t = sqrt(M[1,1]) = a(2) = 1, u = sqrt(M[1,3])u = a(3) = 0.
M^2 = [[49, 126, 81][21, 55, 36][9, 24, 16]]: r = sqrt(M[3, 1]) = a(8) = 3, s = sqrt(M[3, 3]) = a(9) = 4, t = sqrt(M[1, 1]) = a(10) = 7, u = sqrt(M[1, 3]) = a(11) = 9.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,1).
-
I:=[0,1,1,0,1,1,2,3]; [n le 8 select I[n] else 3*Self(n-4)+Self(n-8): n in [1..50]]; // Vincenzo Librandi, Nov 14 2014
-
CoefficientList[Series[- x (3 x^6 - x^5 - 2 x^4 + x^3 + x + 1) / (x^8 + 3 x^4 - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 14 2014 *)
-
concat(0, Vec(-x*(3*x^6-x^5-2*x^4+x^3+x+1)/(x^8+3*x^4-1) + O(x^100))) \\ Colin Barker, Nov 13 2014
A249581
List of quadruples (r,s,t,u): the matrix M = [[9,24,16][3,10,8][1,4,4]] is raised to successive powers, then (r,s,t,u) are the square roots of M[3,1], M[3,3], M[1,1], M[1,3] respectively.
Original entry on oeis.org
0, 1, 1, 0, 1, 2, 3, 4, 5, 8, 13, 20, 23, 36, 59, 92, 105, 164, 269, 420, 479, 748, 1227, 1916, 2185, 3412, 5597, 8740, 9967, 15564, 25531, 39868, 45465, 70996, 116461, 181860, 207391, 323852, 531243, 829564, 946025, 1477268, 2423293, 3784100
Offset: 0
M^0 = [[1,0,0][0,1,0][0,0,1]]. r = sqrt(M[3,1]) = a(0) = 0; s = sqrt(M[3,3]) = a(1) = 1; t = sqrt(M[1,1]) = a(2) = 1; u = sqrt(M[1,3]) = a(3) = 0.
M^1 = [[9,24,16][3,10,8][1,4,4]]. r = sqrt(M[3,1]) = a(4) = 1; s = sqrt(M[3,3]) = a(5) = 2; t = sqrt(M[1,1]) = a(6) = 3; u = sqrt(M[1,3]) = a(7) = 4.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Russell Walsmith, DCL-Chemy III: Hyper-Quadratics
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,5,0,0,0,-2).
-
LinearRecurrence[{0,0,0,5,0,0,0,-2},{0,1,1,0,1,2,3,4},50] (* Harvey P. Dale, Aug 01 2016 *)
-
concat(0, Vec(x*(4*x^6-2*x^5-3*x^4+x^3+x+1)/(2*x^8-5*x^4+1) + O(x^100))) \\ Colin Barker, Nov 04 2014
A249578
List of triples (r,s,t): the matrix M = [[4,12,9][2,7,6][1,4,4]] is raised to successive powers, then (r,s,t) are the square roots of M[3,1], M[1,1], M[1,3] respectively.
Original entry on oeis.org
0, 1, 0, 1, 2, 3, 4, 7, 12, 15, 26, 45, 56, 97, 168, 209, 362, 627, 780, 1351, 2340, 2911, 5042, 8733, 10864, 18817, 32592, 40545, 70226, 121635, 151316, 262087, 453948, 564719, 978122, 1694157, 2107560, 3650401, 6322680
Offset: 0
M^0 = the 3 X 3 identity matrix = [[1,0,0][0,1,0][0,0,1]]. M[3,1] = 0; M[1,1] = 1; M[1,3] = 0. So the first triple is r = a(0) = 0; s = a(1) = 1; t = a(2) = 0.
M^1 = [[4,12,9][2,7,6][1,4,4]], so r = a(3) = 1; s = a(4) = 2; t = a(5) = 3.
-
I:=[0,1,0,1,2,3]; [n le 6 select I[n] else 4*Self(n-3)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Nov 04 2014
-
CoefficientList[Series[x (3 x^4 - 2 x^3 + x^2 + 1) / (x^6 - 4 x^3 + 1), {x, 0, 70}], x] (* Vincenzo Librandi, Nov 04 2014 *)
LinearRecurrence[{0,0,4,0,0,-1},{0,1,0,1,2,3},40] (* Harvey P. Dale, Jan 17 2017 *)
-
concat(0, Vec(x*(3*x^4-2*x^3+x^2+1)/(x^6-4*x^3+1) + O(x^100))) \\ Colin Barker, Nov 04 2014
A249577
List of triples (r,s,t): the matrix M = [[1,4,4][1,3,2][1,2,1]] is raised to successive negative powers, then (r,s,t) are the square roots of M[3,1], M[1,1], M[1,3] respectively.
Original entry on oeis.org
2, -1, 1, -4, 3, -2, 10, -7, 5, -24, 17, -12, 58, -41, 29, -140, 99, -70, 338, -239, 169, -816, 577, -408, 1970, -1393, 985, -4756, 3363, -2378, 11482, -8119, 5741, -27720, 19601, -13860, 66922, -47321, 33461, -161564, 114243, -80782, 390050, -275807, 195025, -941664, 665857, -470832
Offset: 0
M^-1 = [[1,-4,4][-1,3,-2][1,-2,1]]. sqrt(M[1,3]) = 2; M[3,3] = M[1,1] = -1; M[3,1] = 1. Hence a(0) = 2; a(1) = -1; a(2) = 1.
-
LinearRecurrence[{0,0,-2,0,0,1},{2,-1,1,-4,3,-2},50] (* Harvey P. Dale, Aug 02 2024 *)
-
Vec(-(x^4+x^2-x+2)/(x^6-2*x^3-1) + O(x^100)) \\ Colin Barker, Nov 02 2014
A249576
List of triples (r,s,t): the matrix M = [[1,4,4][1,3,2][1,2,1]] is raised to successive powers, then (r,s,t) are the square roots of M[3,1], M[1,1], M[1,3] respectively.
Original entry on oeis.org
0, 1, 0, 1, 1, 2, 2, 3, 4, 5, 7, 10, 12, 17, 24, 29, 41, 58, 70, 99, 140, 169, 239, 338, 408, 577, 816, 985, 1393, 1970, 2378, 3363, 4756, 5741, 8119, 11482, 13860, 19601, 27720, 33461, 47321, 66922, 80782, 114243, 161564, 195025, 275807, 390050, 470832, 665857, 941664
Offset: 0
M^0 = the 3 X 3 identity matrix = [[1,0,0][0,1,0][0,0,1]]. M[3,1] = 0; M[1,1] = 1; M[1,3] = 0. So the first triple is r = a(0) = 0; s = a(1) = 1; t = a(2) = 0.
M^1 = [[1,4,4][1,3,2][1,2,1]], so r = a(3) = 1; s = a(4) = 1; t = a(5) = 2.
a(3n) = the n-th term of
A000129, the Pell numbers.
-
LinearRecurrence[{0,0,2,0,0,1},{0,1,0,1,1,2},60] (* Harvey P. Dale, Dec 29 2021 *)
-
concat(0, Vec(-x*(2*x^4-x^3+x^2+1)/(x^6+2*x^3-1) + O(x^100))) \\ Colin Barker, Nov 02 2014
A229526
The c coefficients of the transform ax^2 + (4a/k - b)x + 4a/k^2 + 2b/k + c= 0 for a,b,c = 1,-1,-1, k = 1,2,3...
Original entry on oeis.org
5, 1, 1, -1, -11, -5, -31, -11, -59, -19, -95, -29, -139, -41, -191, -55, -251, -71, -319, -89, -395, -109, -479, -131, -571, -155, -671, -181, -779, -209, -895, -239, -1019, -271, -1151, -305, -1291, -341, -1439, -379, -1595, -419, -1759, -461, -1931, -505
Offset: 1
For k = 5, the coefficients are 1, 9/5, -11/25. Clearing fractions gives 25, 45, -11 and -11 = a[5].
The a coefficients are
A168077, b coefficients are
A171621, the sum of a, b and c coefficients is
A229525.
A229525
Sum of coefficients of the transform ax^2 + (4a/k - b)x + 4a/k^2 + 2b/k + c = 0 for a,b,c = 1,-1,-1, k = 1,2,3...
Original entry on oeis.org
11, 5, 31, 11, 59, 19, 95, 29, 139, 41, 191, 55, 251, 71, 319, 89, 395, 109, 479, 131, 571, 155, 671, 181, 779, 209, 895, 239, 1019, 271, 1151, 305, 1291, 341, 1439, 379, 1595, 419, 1759, 461, 1931, 505, 2111, 551, 2299, 599, 2495, 649, 2699, 701, 2911, 755
Offset: 1
For k = 5, the coefficients are 1, 9/5, -11/25. Clearing fractions, 25, 45, -11 and 25 + 45 -11 = 59 = a[5].
A226593
Largest period of a recurrence sequence of pairs of permutations of length n.
Original entry on oeis.org
1, 3, 8, 18, 96, 216, 2112, 9720, 39024, 194256, 1116240
Offset: 1
For n = 4: 3142 x 2341 = 1423; 2341 x 1423 = 2134... the sequence thus generated is of period = 18.
Cf.
A001175 (Pisano periods: period of Fibonacci numbers (
A000045) mod n).
-
period(a,b)=my(n=matsize(a)[2], v=vector(n), aa=vector(n,i,a[i]), bb=vector(n,i,b[i]), id, nsteps); while(id!=n, for(i=1,n, v[i]=a[b[i]]); id=sum(i=1,n, b[i]==aa[i] && v[i]==bb[i]); for(i=1,n, a[i]=b[i]; b[i]=v[i]); nsteps++); nsteps
a(n)=my(a,b,m,p); for(k=1,n!, a=numtoperm(n,k); for(l=1,n!, b=numtoperm(n,l); p=period(a,b); if(p>m,m=p))); m \\ Ralf Stephan, Aug 13 2013
Comments