cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A249577 List of triples (r,s,t): the matrix M = [[1,4,4][1,3,2][1,2,1]] is raised to successive negative powers, then (r,s,t) are the square roots of M[3,1], M[1,1], M[1,3] respectively.

Original entry on oeis.org

2, -1, 1, -4, 3, -2, 10, -7, 5, -24, 17, -12, 58, -41, 29, -140, 99, -70, 338, -239, 169, -816, 577, -408, 1970, -1393, 985, -4756, 3363, -2378, 11482, -8119, 5741, -27720, 19601, -13860, 66922, -47321, 33461, -161564, 114243, -80782, 390050, -275807, 195025, -941664, 665857, -470832
Offset: 0

Views

Author

Russell Walsmith, Nov 01 2014

Keywords

Comments

The sequence comprises, in reverse order, numbers to the right of a(0) in A249576.

Examples

			M^-1 = [[1,-4,4][-1,3,-2][1,-2,1]]. sqrt(M[1,3]) = 2; M[3,3] = M[1,1] = -1; M[3,1] = 1. Hence a(0) = 2; a(1) = -1; a(2) = 1.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,-2,0,0,1},{2,-1,1,-4,3,-2},50] (* Harvey P. Dale, Aug 02 2024 *)
  • PARI
    Vec(-(x^4+x^2-x+2)/(x^6-2*x^3-1) + O(x^100)) \\ Colin Barker, Nov 02 2014

Formula

a(n) = -2*a(n-3)+a(n-6); G.f.: -(x^4+x^2-x+2) / (x^6-2*x^3-1). - Colin Barker, Nov 02 2014

A092550 Expansion of -x*(1+x+x^2+x^4)/(-1+2*x^3+x^6).

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 5, 7, 5, 12, 17, 12, 29, 41, 29, 70, 99, 70, 169, 239, 169, 408, 577, 408, 985, 1393, 985, 2378, 3363, 2378, 5741, 8119, 5741, 13860, 19601, 13860, 33461, 47321, 33461, 80782, 114243, 80782, 195025, 275807, 195025, 470832, 665857
Offset: 1

Views

Author

Roger L. Bagula, Apr 08 2004

Keywords

Comments

If prefaced with a 1: denominators in convergents to barover:[1, 0, 1] as follows:
1,....0,....1,....1,....0,....1,....1,....0,....1,....
1/1,..0/1,..1/2,..1/3...1/2...2/5...3/7...2/5...5/12,...;
Gary W. Adamson, Mar 25 2014
For k(n), a term in A249576, k(n+6) mod (k(n+5)) = a(n). - Russell Walsmith, Nov 27 2014

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    m=3 fib[n_Integer?Positive] :=fib[n] =If[Mod[n, m]==0, fib[n-2], fib[n-1]+fib[n-2]] fib[0]=fib[1] = fib[2] = 1 digits=50 a=Table[fib[n], {n, 1, digits}]
    LinearRecurrence[{0,0,2,0,0,1},{1,1,1,2,3,2},50] (* Harvey P. Dale, Jan 13 2015 *)

Formula

a(n) = a(n-2) if 3|n, otherwise a(n)= a(n-1)+a(n-2).
From R. J. Mathar, Dec 08 2010: (Start)
a(n)= +2*a(n-3) +a(n-6).
G.f.: -x*(1+x+x^2+x^4)/(-1+2*x^3+x^6).
a(3n+1) = A000129(n+1). a(3n)=A000129(n). a(3n+2)= A078057(n). (End)

Extensions

Edited, and new name, Joerg Arndt, Sep 17 2013
Showing 1-2 of 2 results.