cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Michael Tulskikh

Michael Tulskikh's wiki page.

Michael Tulskikh has authored 3 sequences.

A336630 a(n) = 2*F(2*n+1) + 4*F(n+1)*F(n-1) for n > 0, with a(0) = 0 and F(n) = A000045(n).

Original entry on oeis.org

0, 4, 18, 38, 108, 274, 726, 1892, 4962, 12982, 33996, 88994, 232998, 609988, 1596978, 4180934, 10945836, 28656562, 75023862, 196415012, 514221186, 1346248534, 3524524428, 9227324738, 24157449798, 63245024644, 165577624146, 433487847782
Offset: 0

Author

Michael Tulskikh, Jul 28 2020

Keywords

Crossrefs

Formula

a(n) = (F(4n+1) - F(n+1)^4)/F(n)^2 for n > 0 and a(0) = 0, where F(n) = A000045(n).
a(n) = 2*A001519(n+1) + 4*A059929(n-1) for n > 0.
From Stefano Spezia, Jul 28 2020: (Start)
O.g.f.: 2*x*(2 + 5*x - 3*x^2)/(1 - 2*x - 2*x^2 + x^3).
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-2) for n > 3. (End)

A335274 a(n) = 2*a(n-1) + a(n-3), where a(0) = 0, a(1) = 1, a(2) = 4.

Original entry on oeis.org

0, 1, 4, 8, 17, 38, 84, 185, 408, 900, 1985, 4378, 9656, 21297, 46972, 103600, 228497, 503966, 1111532, 2451561, 5407088, 11925708, 26302977, 58013042, 127951792, 282206561, 622426164, 1372804120, 3027814801, 6678055766, 14728915652, 32485646105, 71649347976
Offset: 0

Author

Michael Tulskikh, May 30 2020

Keywords

Comments

a(n) is the number of ways to tile a 2 x n strip, with a bent tromino added to the top, with dominos and L-shaped trominos:
_
||
|||_
|||_||| . . .
|||_||| . . .

Examples

			a(2) = 4 as shown by these four tilings:
   _         _         _         _
  |X|_      | |_      |X|_      | |_
  |X|X|  ,  |_|X|  ,  |X|X|  ,  |_| |
  |_ _|     |X X|     | | |     |X|_|
  |_ _|     |_ _|     |_|_|     |X X|
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 0, 1}, {0, 1, 4}, 50] (* Paolo Xausa, Mar 20 2025 *)
  • PARI
    concat(0, Vec(x*(1 + 2*x) / (1 - 2*x - x^3) + O(x^35))) \\ Colin Barker, Jun 04 2020

Formula

a(n) = 2*a(n-1) + a(n-3).
a(n) = 2*A008998(n-1) - A008998(n-4).
a(n) = A008998(n-1) + 2*A008998(n-2).
G.f.: x*(1 + 2*x) / (1 - 2*x - x^3). - Colin Barker, Jun 04 2020

A332491 a(n) = 2*a(n-1) + a(n-3), where a(0) = 3, a(1) = 1, a(2) = 2.

Original entry on oeis.org

3, 1, 2, 7, 15, 32, 71, 157, 346, 763, 1683, 3712, 8187, 18057, 39826, 87839, 193735, 427296, 942431, 2078597, 4584490, 10111411, 22301419, 49187328, 108486067, 239273553, 527734434, 1163954935, 2567183423, 5662101280, 12488157495, 27543498413
Offset: 0

Author

Michael Tulskikh, Feb 13 2020

Keywords

Programs

  • Mathematica
    LinearRecurrence[{2,0,1},{3,1,2},40] (* Harvey P. Dale, Apr 20 2025 *)

Formula

a(n) = 2*a(n-1) + a(n-3).
a(n) = A052980(n) + 2*A008998(n-3).
a(n) = A008998(n-1) + 3*A008998(n-3).
G.f.: (5x-3)/(x^3+2*x-1).