cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 58 results. Next

A106180 Matrix inverse of number triangle A046854.

Original entry on oeis.org

1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 0, 2, -2, -1, 1, -2, 2, 3, -3, -1, 1, 0, -5, 5, 4, -4, -1, 1, 5, -5, -9, 9, 5, -5, -1, 1, 0, 14, -14, -14, 14, 6, -6, -1, 1, -14, 14, 28, -28, -20, 20, 7, -7, -1, 1, 0, -42, 42, 48, -48, -27, 27
Offset: 0

Views

Author

Paul Barry, Apr 24 2005

Keywords

Comments

First column is A105523; second column is A106181.
Triangle T(n,k), 0 <= k <= n, read by rows given by [ -1, 1, -1, 1, -1, 1, -1, 1, -1, 1,...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 29 2006
A124448*A007318 as infinite lower triangular matrices. - Philippe Deléham, Oct 16 2007

Examples

			Triangle begins
   1;
  -1,  1;
   0, -1,  1;
   1, -1, -1,  1;
   0,  2, -2, -1,  1;
  -2,  2,  3, -3, -1,  1;
   0, -5,  5,  4, -4, -1,  1;
		

Crossrefs

Cf. A000108.

Formula

Riordan array (1-y, y) where y=-(1-sqrt(1+4x^2))/(2x).
Sum_{k=0..n} abs(T(n,k)) = A063886(n). - Philippe Deléham, Oct 06 2006
T(0,0)=1; T(n,k)=0 if k < 0 or if k > n; T(n,0) = -T(n-1,0) - T(n-1,1); T(n,k) = T(n,k-1) - T(n-1,k+1) for k >= 1. - Philippe Deléham, Oct 27 2007
T(2n,0) = A000007(n); T(2n+2,2k+2) = -T(2n+2,2k+1) = (-1)^(n-k)*A039598(n,k); T(2n+1,2k+1) = -T(2n+1,2k) = (-1)^(n-k)*A039599(n,k). - Philippe Deléham, Oct 29 2007
Sum_{k>=0} T(m,k)*T(n,k)*(-1)^k = T(m+n,0) = A105523(m+n). - Philippe Deléham, Jan 24 2010

A131245 A046854^2 as an infinite lower triangular matrix.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 5, 2, 1, 8, 9, 7, 2, 1, 13, 19, 13, 9, 2, 1, 21, 33, 34, 17, 11, 2, 1, 34, 65, 61, 53, 21, 13, 2, 1, 55, 111, 141, 97, 76, 25, 15, 2, 1, 89, 210, 248, 257, 141, 103, 29, 17, 2, 1, 144, 355, 534, 461, 421, 193, 134, 33, 19, 2, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 22 2007

Keywords

Comments

Left border = Fibonacci numbers.
Row sums = A131246.
A131243 is the square of the reflection triangle to A046854: A065941.
Row sums of A131243 = (1, 3, 6, 14, 30, 67, 146, 322, 705, 1549, ...).

Examples

			First few rows of the triangle:
   1;
   2,  1;
   3,  2,  1;
   5,  5,  2,  1;
   8,  9,  7,  2,  1;
  13, 19, 13,  9,  2,  1;
  21, 33, 34, 17, 11,  2,  1;
  ...
		

Crossrefs

Programs

  • PARI
    T(n, k) = binomial((n+k)\2, k);
    row(n) = my(m=matrix(n+1, n+1, i, j, T(i-1,j-1))); vector(n+1, i, (m^2)[n+1,i]);
    lista(nn) = for (n=0, nn, my(v=row(n)); for (i=1, #v, print1(v[i], ", "));); \\ Michel Marcus, Feb 28 2022

Extensions

More terms from Michel Marcus, Feb 28 2022

A131270 Triangle T(n,k) = 2*A046854(n,k) - 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 5, 1, 1, 1, 5, 5, 7, 1, 1, 1, 5, 11, 7, 9, 1, 1, 1, 7, 11, 19, 9, 11, 1, 1, 1, 7, 19, 19, 29, 11, 13, 1, 1, 1, 9, 19, 39, 29, 41, 13, 15, 1, 1, 1, 9, 29, 39, 69, 41, 55, 15, 17, 1, 1, 1, 11, 29, 69, 69, 111, 55, 71, 17, 19, 1, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 23 2007

Keywords

Comments

Row sums = A131269: {1, 2, 3, 6, 11, 20, 35, 60, 101, 168, ...}.

Examples

			First few rows of the triangle:
  1;
  1,  1;
  1,  1,  1;
  1,  3,  1,  1;
  1,  3,  5,  1,  1;
  1,  5,  5,  7,  1,  1;
  1,  5, 11,  7,  9,  1,  1;
  1,  7, 11, 19,  9, 11,  1,  1;
  ...
		

Crossrefs

Programs

  • Magma
    [[2*Binomial(Floor((n+k)/2), k) -1: k in [0..n]]:n in [0..12]]; // G. C. Greubel, Jul 09 2019
    
  • Mathematica
    Table[2*Binomial[Floor[(n+k)/2], k] - 1, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 09 2019 *)
  • PARI
    T(n,k) = 2*binomial((n+k)\2, k)-1; \\ G. C. Greubel, Jul 09 2019
    
  • Sage
    [[2*binomial(floor((n+k)/2), k) -1 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 09 2019

Formula

T(n,k) = 2*A046854(n,k) - 1.
Reversed triangle of A131268.

A131402 2*A007318 - (A046854 + A065941 - A000012).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 6, 7, 6, 1, 1, 7, 14, 14, 7, 1, 1, 9, 20, 33, 20, 9, 1, 1, 10, 31, 56, 56, 31, 10, 1, 1, 12, 40, 97, 111, 97, 40, 12, 1, 1, 13, 55, 142, 217, 217, 142, 55, 13, 1, 1, 15, 67, 213, 358, 463, 358, 213, 67, 15, 1, 1, 16, 86, 287, 590, 841, 841, 590, 287, 86, 16, 1
Offset: 0

Views

Author

Gary W. Adamson, Jul 07 2007

Keywords

Comments

Row sums = A131403: (1, 2, 5, 10, 21, 44, 93, ...).

Examples

			First few rows of the triangle are:
  1;
  1,  1;
  1,  3,  1;
  1,  4,  4,  1;
  1,  6,  7,  6,  1;
  1,  7, 14, 14,  7,  1;
  1,  9, 20, 33, 20,  9,  1;
  1, 10, 31, 56, 56, 31, 10,  1;
  ...
		

Crossrefs

Row sums are A131403.

Programs

  • PARI
    T(n,k) = if(k <= n, 2*binomial(n, k) + 1 - binomial((n + k)\2, k) - binomial(n-(k+1)\2, k\2), 0) \\ Andrew Howroyd, Aug 09 2018

Formula

2*A007318 - (A046854 + A065941 - A000012) as infinite lower triangular matrices.
T(n,k) = 2*binomial(n, k) + 1 - binomial(floor((n + k)/2), k) - binomial(n-floor((k+1)/2), floor(k/2)). - Andrew Howroyd, Aug 09 2018

Extensions

Missing terms inserted and a(55) and beyond from Andrew Howroyd, Aug 09 2018

A153342 Binomial transform of triangle A046854 (shifted).

Original entry on oeis.org

1, 2, 0, 4, 1, 0, 8, 4, 1, 0, 16, 12, 5, 1, 0, 32, 32, 18, 6, 1, 0, 64, 80, 56, 25, 7, 1, 0, 128, 192, 160, 88, 33, 8, 1, 0, 256, 448, 432, 280, 129, 42, 9, 1, 0, 512, 1024, 1120, 832, 450, 180, 52, 10, 1, 0, 1024, 2304, 2816, 2352, 1452, 681, 242, 63, 11, 1, 0
Offset: 0

Views

Author

Gary W. Adamson, Dec 24 2008

Keywords

Comments

Row sums = odd indexed Fibonacci numbers.
Mirror image of triangle in A121462. - Philippe Deléham, Dec 31 2008
Triangle T(n,k), 0 <= k <= n, read by rows given by [2,0,0,0,0,0,0,0,0,0,0,0,...] DELTA [0,1/2,1/2,0,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 01 2009

Examples

			First few rows of the triangle =
    1;
    2,    0;
    4,    1,    0;
    8,    4,    1,   0;
   16,   12,    5,   1,   0;
   32,   32,   18,   6,   1,   0;
   64,   80,   56,  25,   7,   1,  0;
  128,  192,  160,  88,  33,   8,  1,  0;
  256,  448,  432, 280, 129,  42,  9,  1, 0;
  512, 1024, 1120, 832, 450, 180, 52, 10, 1, 0;
  ...
		

Crossrefs

Formula

Triangle read by rows, A007318 * A046854 (shifted down 1 row, inserting a "1" at (0,0).
G.f.: (1-y*x)/(1-2*x-y*x+y*x^2). - Philippe Deléham, Mar 27 2012
T(n,k) = 2*T(n-1,l) + T(n-1,k-1) - T(n-2,k-1), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 27 2012

Extensions

Second term corrected by Philippe Deléham, Jan 01 2009

A131239 Triangle, T(n,k) = 3*A007318(n,k) - 2*A046854(n,k), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 5, 7, 1, 1, 8, 12, 10, 1, 1, 9, 24, 22, 13, 1, 1, 12, 33, 52, 35, 16, 1, 1, 13, 51, 85, 95, 51, 19, 1, 1, 16, 64, 148, 180, 156, 70, 22, 1, 1, 17, 88, 212, 348, 336, 238, 92, 25, 1, 1, 20, 105, 320, 560, 714, 574, 344, 117, 28, 1, 1, 21, 135, 425, 920, 1274, 1330, 918, 477, 145, 31, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 21 2007

Keywords

Comments

Row sums = A074878: (1, 2, 6, 14, 32, 70, 239, ...).

Examples

			First few rows of the triangle:
  1;
  1,  1;
  1,  4,  1;
  1,  5,  7,  1;
  1,  8, 12, 10,  1;
  1,  9, 24, 22, 13,  1;
  1, 12, 33, 52, 35, 16, 1;
  ...
		

Crossrefs

Programs

  • GAP
    B:=Binomial;; Flat(List([0..12], n-> List([0..n], k-> 3*B(n,k) - 2*B(Int((n+k)/2), k) ))); # G. C. Greubel, Jul 12 2019
  • Magma
    B:=Binomial; [3*B(n,k) - 2*B(Floor((n+k)/2), k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2019
    
  • Mathematica
    With[{B=Binomial}, Table[3*B[n,k] - 2*B[Floor[(n+k)/2], k], {n,0,12}, {k,0,n}]]//Flatten (* G. C. Greubel, Jul 12 2019 *)
  • PARI
    b=binomial; T(n,k) = 3*b(n,k) - 2*b((n+k)\2, k);
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 12 2019
    
  • Sage
    b=binomial; [[3*b(n,k) - 2*b(floor((n+k)/2), k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 12 2019
    

Formula

T(n,k) = 3*A007318(n,k) - 2*A046854(n,k) as infinite lower triangular matrices.
T(n,k) = 3*binomial(n,k) - 2*binomial(floor((n+k)/2), k). - G. C. Greubel, Jul 12 2019

Extensions

More terms added by G. C. Greubel, Jul 12 2019

A131240 T(n,k) = 2*A046854(n,k) - I.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 2, 4, 2, 1, 2, 4, 6, 2, 1, 2, 6, 6, 8, 2, 1, 2, 6, 12, 8, 10, 2, 1, 2, 8, 12, 20, 10, 12, 2, 1, 2, 8, 20, 20, 30, 12, 14, 2, 1, 2, 10, 20, 40, 30, 42, 14, 16, 2, 1, 2, 10, 30, 40, 70, 42, 56, 16, 18, 2, 1, 2, 12, 30, 70, 70, 112, 56, 72, 18, 20, 2, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 21 2007

Keywords

Comments

Row sums = A001595: (1, 3, 5, 9, 15, 25, 41, 67, ...).
A131241 = 3*A046854 - 2*I.

Examples

			First few rows of the triangle:
  1;
  2, 1;
  2, 2,  1;
  2, 4,  2, 1;
  2, 4,  6, 2,  1;
  2, 6,  6, 8,  2, 1;
  2, 6, 12, 8, 10, 2, 1;
  ...
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k=n then return 1;
        else return 2*Binomial(Int((n+k)/2), k);
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k)))); # G. C. Greubel, Jul 12 2019
  • Magma
    [k eq n select 1 else 2*Binomial(Floor((n+k)/2), k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2019
    
  • Mathematica
    Table[If[k==n, 1, 2*Binomial[Floor[(n+k)/2], k]], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 12 2019 *)
  • PARI
    T(n,k) = if(k==n, 1, 2*binomial((n+k)\2, k));
    
  • Sage
    def T(n, k):
        if (k==n): return 1
        else: return 2*binomial(floor((n+k)/2), k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 12 2019
    

Formula

T(n,k) = 2*A046854(n,k) - Identity matrix, where A046854 = Pascal's triangle with repeats by columns.

Extensions

More terms added by G. C. Greubel, Jul 12 2019

A131375 A007318 + A046854 - A049310.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 3, 4, 1, 1, 6, 6, 5, 1, 2, 5, 13, 10, 6, 1, 1, 9, 15, 24, 15, 7, 1, 2, 7, 27, 35, 40, 21, 8, 1, 1, 12, 28, 66, 70, 62, 28, 9, 1, 2, 9, 46, 84, 141, 126, 91, 36, 10, 1
Offset: 0

Views

Author

Gary W. Adamson, Jul 04 2007

Keywords

Comments

Row sums = A117591: (1, 3, 5, 10, 19, 37, 72,...).

Examples

			First few rows of the triangle are:
1;
2, 1;
1, 3, 1;
2, 3, 4, 1;
1, 6, 6, 5, 1;
2, 5, 13, 10, 6, 1;
1, 9, 15, 24, 15, 7, 1;
...
		

Crossrefs

Formula

A007318 + A046854 - A049310 as infinite lower triangular matrices.

A081206 Correlation matrix of triangle A046854.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 3, 3, 1, 1, 3, 4, 4, 3, 1, 1, 4, 6, 7, 6, 4, 1, 1, 4, 7, 9, 9, 7, 4, 1, 1, 5, 10, 14, 16, 14, 10, 5, 1, 1, 5, 11, 17, 21, 21, 17, 11, 5, 1, 1, 6, 15, 25, 34, 37, 34, 25, 15, 6, 1, 1, 6, 16, 29, 42, 50, 50, 42, 29, 16, 6, 1, 1, 7, 21, 41, 64, 82, 89, 82, 64, 41
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Comments

Main diagonal is A081207.

Formula

As a square array, defined by T1(i, j) = Sum_{k=0..min(i, j)} T(i, k)*T(j, k), T(i, j)=A046854(i, j)=binomial(floor((i+j)/2), j).

A124039 Triangle read by rows: T(n, k) = (-1)^floor((n+k+2)/2)*(2 - (-1)^(n+k))*A046854(n-1, k-1) with T(1, 1) = 3.

Original entry on oeis.org

3, 3, -1, -1, -3, 1, -3, 2, 3, -1, 1, 6, -3, -3, 1, 3, -3, -9, 4, 3, -1, -1, -9, 6, 12, -5, -3, 1, -3, 4, 18, -10, -15, 6, 3, -1, 1, 12, -10, -30, 15, 18, -7, -3, 1, 3, -5, -30, 20, 45, -21, -21, 8, 3, -1, -1, -15, 15, 60, -35, -63, 28, 24, -9, -3, 1
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Nov 03 2006

Keywords

Examples

			Triangle begins as:
   3;
   3,  -1;
  -1,  -3,   1;
  -3,   2,   3,  -1;
   1,   6,  -3,  -3,   1;
   3,  -3,  -9,   4,   3,  -1;
  -1,  -9,   6,  12,  -5,  -3,   1;
  -3,   4,  18, -10, -15,   6,   3, -1;
   1,  12, -10, -30,  15,  18,  -7, -3,  1;
   3,  -5, -30,  20,  45, -21, -21,  8,  3, -1;
  -1, -15,  15,  60, -35, -63,  28, 24, -9, -3,  1;
		

Crossrefs

Columns include: (-1)^n*A112030(n-1) (k=1), (-1)^floor((n+1)/2)*A064455(n) (k=2).

Programs

  • Magma
    A124039:= func< n,k | (-1)^Floor((n+k+2)/2)*(2-(-1)^(n+k))*Binomial(Floor((n+k-2)/2), k-1) + 2*0^(n-1) >;
    [A124039(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jan 30 2025
  • Mathematica
    (* First program *)
    f[n_, m_, d_]:= If[n==m && n>1 && m>1, 0, If[n==m-1 || n==m+1, -1, If[n==m== 1, 3, 0]]];
    M[d_]:= Table[T[n,m,d], {n,d}, {m,d}];
    A124039[n_]:= Join[{M[1]}, CoefficientList[Det[M[n] - x*IdentityMatrix[n]], x]];
    Table[A124039[n], {n,12}]//Flatten
    (* Second program *)
    A124039[n_, k_]:= (-1)^Floor[(n+k+2)/2]*(2-(-1)^(n-k))*Binomial[Floor[(n+k- 2)/2], k-1] +2*Boole[n==1];
    Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jan 30 2025 *)
  • SageMath
    @CachedFunction
    def t(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        h = 3*t(n-1,k) if n==1 else 0
        return t(n-1,k-1) - t(n-2,k) - h
    def A124039(n,k): return t(n,k) + 2*0^n
    print([[A124039(n,k) for k in range(n+1)] for n in range(13)]) # Peter Luschny, Nov 20 2012
    
  • SageMath
    def A124039(n,k): return (-1)^((n+k+2)//2)*(2-(-1)^(n+k))*binomial((n+k-2)//2, k-1) + 2*0^(n-1)
    print(flatten([[A124039(n,k) for k in range(1,n+1)] for n in range(1,13)])) # G. C. Greubel, Jan 30 2025
    

Formula

T(n, k) = (-1)^floor((n+k+2)/2)*(2 - (-1)^(n+k))*A046854(n-1,k-1) + 2*[n=1]. - G. C. Greubel, Jan 30 2025

Extensions

Edited by G. C. Greubel, Jan 30 2025
Showing 1-10 of 58 results. Next