A106180 Matrix inverse of number triangle A046854.
1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 0, 2, -2, -1, 1, -2, 2, 3, -3, -1, 1, 0, -5, 5, 4, -4, -1, 1, 5, -5, -9, 9, 5, -5, -1, 1, 0, 14, -14, -14, 14, 6, -6, -1, 1, -14, 14, 28, -28, -20, 20, 7, -7, -1, 1, 0, -42, 42, 48, -48, -27, 27
Offset: 0
Examples
Triangle begins 1; -1, 1; 0, -1, 1; 1, -1, -1, 1; 0, 2, -2, -1, 1; -2, 2, 3, -3, -1, 1; 0, -5, 5, 4, -4, -1, 1;
Crossrefs
Cf. A000108.
Formula
Riordan array (1-y, y) where y=-(1-sqrt(1+4x^2))/(2x).
Sum_{k=0..n} abs(T(n,k)) = A063886(n). - Philippe Deléham, Oct 06 2006
T(0,0)=1; T(n,k)=0 if k < 0 or if k > n; T(n,0) = -T(n-1,0) - T(n-1,1); T(n,k) = T(n,k-1) - T(n-1,k+1) for k >= 1. - Philippe Deléham, Oct 27 2007
T(2n,0) = A000007(n); T(2n+2,2k+2) = -T(2n+2,2k+1) = (-1)^(n-k)*A039598(n,k); T(2n+1,2k+1) = -T(2n+1,2k) = (-1)^(n-k)*A039599(n,k). - Philippe Deléham, Oct 29 2007
Sum_{k>=0} T(m,k)*T(n,k)*(-1)^k = T(m+n,0) = A105523(m+n). - Philippe Deléham, Jan 24 2010
Comments