cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A131403 Row sums of triangle A131402.

Original entry on oeis.org

1, 2, 5, 10, 21, 44, 93, 196, 411, 856, 1771, 3642, 7451, 15178, 30809, 62358, 125921, 253800, 510777, 1026704, 2061751, 4137012, 8295895, 16627190, 33311671, 66716054, 133582133, 267407026, 535206861, 1071049316, 2143127061, 4287918172, 8578528851, 17161414288
Offset: 0

Views

Author

Gary W. Adamson, Jul 07 2007

Keywords

Examples

			a(4) = 21 = sum of row 4 terms of A131402: (1 + 6 + 7 + 6 + 1).
		

Crossrefs

Cf. A131402.

Programs

  • Mathematica
    LinearRecurrence[{5,-8,3,3,-2},{1,2,5,10,21},40] (* Harvey P. Dale, Nov 22 2021 *)
  • PARI
    Vec((1 - 3*x + 3*x^2 - 2*x^3 + 2*x^4)/((1 - x)^2*(1 - 2*x)*(1 - x - x^2)) + O(x^40)) \\ Andrew Howroyd, Aug 09 2018

Formula

From Andrew Howroyd, Aug 09 2018: (Start)
a(n) = 5*a(n-1) - 8*a(n-2) + 3*a(n-3) + 3*a(n-4) - 2*a(n-5).
G.f.: (1 - 3*x + 3*x^2 - 2*x^3 + 2*x^4)/((1 - x)^2*(1 - 2*x)*(1 - x - x^2)).
(End)

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 09 2018

A131404 a(n) = 2*A131402(n) - 1.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 7, 7, 1, 1, 11, 13, 11, 1, 1, 13, 27, 27, 13, 1, 1, 17, 39, 65, 39, 17, 1, 1, 19, 61, 111, 111, 61, 19, 1, 1, 23, 79, 193, 221, 193, 79, 23, 1, 1, 25, 109, 283, 433, 433, 283, 109, 25, 1, 1, 29, 133, 425, 715, 925, 715, 425, 133, 29, 1
Offset: 0

Views

Author

Gary W. Adamson, Jul 07 2007

Keywords

Comments

Row sums = A131405: (1, 2, 7, 16, 37, 82, 179, ...).

Examples

			First few rows of the triangle are:
  1;
  1,  1;
  1,  5,  1;
  1,  7,  7,  1;
  1, 11, 13, 11,  1;
  1, 13, 27, 27, 13,  1;
  1, 17, 39, 65, 39, 17,  1;
  ...
		

Crossrefs

Row sums are A131405.
Cf. A131402.

Programs

  • Magma
    /* As triangle */ [[4*Binomial(n, k) + 1 - 2*Binomial(Floor(n + k) div 2, k) - 2*Binomial(n-Floor((k+1)/2), Floor(k/2)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 10 2018
  • PARI
    T(n,k) = if(k <= n, 4*binomial(n,k) + 1 - 2*binomial((n + k)\2, k) - 2*binomial(n-(k+1)\2, k\2), 0) \\ Andrew Howroyd, Aug 09 2018
    

Formula

T(n,k) = 4*binomial(n, k) + 1 - 2*binomial(floor((n + k)/2), k) - 2*binomial(n-floor((k+1)/2), floor(k/2)). - Andrew Howroyd, Aug 09 2018

Extensions

Terms a(55) and beyond from Andrew Howroyd, Aug 09 2018
Showing 1-2 of 2 results.