A054451 Third column of triangle A054450 (partial row sums of unsigned Chebyshev triangle A049310).
1, 1, 4, 5, 12, 17, 33, 50, 88, 138, 232, 370, 609, 979, 1596, 2575, 4180, 6755, 10945, 17700, 28656, 46356, 75024, 121380, 196417, 317797, 514228, 832025, 1346268, 2178293, 3524577, 5702870, 9227464, 14930334, 24157816, 39088150, 63245985, 102334135
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,3,-2,-3,1,1).
Programs
-
Maple
BB:=1/(1-k^2)^2/(1-k-k^2): seq(coeff(series(BB, k, n+1), k, n), n=0..50); # Zerinvary Lajos, May 16 2007
-
Mathematica
LinearRecurrence[{1,3,-2,-3,1,1},{1,1,4,5,12,17},40] (* Harvey P. Dale, Oct 06 2024 *)
-
PARI
Vec(-1/((x-1)^2*(x+1)^2*(x^2+x-1)) + O(x^100)) \\ Colin Barker, Jun 14 2015
Formula
a(n) = A054450(n+2, 2).
G.f.: Fib(x)/(1-x^2)^2, with Fib(x)=1/(1-x-x^2) = g.f. A000045 (Fibonacci numbers without 0).
a(n-2) = Fibonacci(n+1) - binomial(n-floor(n/2), floor(n/2)), or a(n-2) = Sum_{i=0..floor(n/2)-1} binomial(n-i, i). - Jon Perry, Mar 18 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+2, k). - Paul Barry, Oct 23 2004
Extensions
More terms from James Sellers, Apr 28 2000
Comments