cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A054450 Triangle of partial row sums of unsigned triangle A049310(n,m), n >= m >= 0 (Chebyshev S-polynomials).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 4, 4, 1, 1, 8, 8, 5, 5, 1, 1, 13, 12, 12, 6, 6, 1, 1, 21, 21, 17, 17, 7, 7, 1, 1, 34, 33, 33, 23, 23, 8, 8, 1, 1, 55, 55, 50, 50, 30, 30, 9, 9, 1, 1, 89, 88, 88, 73, 73, 38, 38, 10, 10, 1, 1, 144, 144, 138, 138, 103, 103, 47, 47, 11, 11, 1, 1
Offset: 0

Views

Author

Wolfdieter Lang, Apr 27 2000 and May 08 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is Fib(z)/(1-x*z/(1-z^2)) where Fib(x)=1/(1-x-x^2) = g.f. for A000045(n+1) (Fibonacci numbers without 0).
This is the first member of the family of Riordan-type matrices obtained from the unsigned convolution matrix A049310 by repeated application of the partial row sums procedure.

Examples

			Triangle begins as:
   1;
   1,  1;
   2,  1,  1;
   3,  3,  1,  1;
   5,  4,  4,  1,  1;
   8,  8,  5,  5,  1,  1;
  13, 12, 12,  6,  6,  1,  1;
  21, 21, 17, 17,  7,  7,  1,  1;
  34, 33, 33, 23, 23,  8,  8,  1,  1;
  55, 55, 50, 50, 30, 30,  9,  9,  1, 1;
  89, 88, 88, 73, 73, 38, 38, 10, 10, 1, 1;
  ...
Fourth row polynomial (n=3): p(3,x) = 3 + 3*x + x^2 + x^3.
		

Crossrefs

Programs

Formula

T(n, m) = Sum_{k=m..n} |A049310(n, k)| (sequence of partial row sums in column m).
Column m recursion: T(n, m) = Sum_{j=m..n} T(j-1, m)*|A049310(n-j, 0)| + |A049310(n, m)|, n >= m >= 0, a(n, m) := 0 if n
T(n, 0) = A000045(n+1).
T(n, 1) = A052952(n-1).
T(n, 2) = A054451(n-2).
Sum_{k=0..n} T(n, k) = A029907(n) = A054453(n, 0).
G.f. for column m: Fib(x)*(x/(1-x^2))^m, m >= 0, with Fib(x) = g.f. A000045(n+1).
The corresponding square array has T(n, k) = Sum_{j=0..floor(k/2)} binomial(n+k-j, j). - Paul Barry, Oct 23 2004
From G. C. Greubel, Jul 25 2022: (Start)
T(n, 3) = A099571(n-3).
T(n, 4) = A099572(n-4).
T(n, n) = T(n, n-1) = A000012(n).
T(n, n-2) = A000027(n), n >= 2.
T(n, n-3) = A000027(n), n >= 3.
T(n, n-4) = A152948(n), n >= 4.
T(n, n-5) = A152948(n), n >= 5.
T(n, n-6) = A038793(n), n >= 6.
T(n, n-8) = A038794(n), n >= 8.
T(n, n-10) = A038795(n), n >= 10.
T(n, n-12) = A038796(n), n >= 12. (End)

A099571 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+3, k).

Original entry on oeis.org

1, 1, 5, 6, 17, 23, 50, 73, 138, 211, 370, 581, 979, 1560, 2575, 4135, 6755, 10890, 17700, 28590, 46356, 74946, 121380, 196326, 317797, 514123, 832025, 1346148, 2178293, 3524441, 5702870, 9227311, 14930334, 24157645, 39088150, 63245795
Offset: 0

Author

Paul Barry, Oct 23 2004

Keywords

Comments

Fourth column of triangle A054450.

Crossrefs

Programs

  • Magma
    [Fibonacci(n+4) +(-1)^n*(n^2+4*n+7)/16 -(n^2+12*n+39)/16: n in [0..40]]; // G. C. Greubel, Jul 25 2022
    
  • Mathematica
    Table[Sum[Binomial[n-k+3,k],{k,0,Floor[n/2]}],{n,0,40}] (* or *) LinearRecurrence[{1,4,-3,-6,3,4,-1,-1},{1,1,5,6,17,23,50,73},40] (* Harvey P. Dale, Jun 04 2021 *)
  • SageMath
    [fibonacci(n+4) +(-1)^n*(n^2+4*n+7)/16 -(n^2+12*n+39)/16 for n in (0..40)] # G. C. Greubel, Jul 25 2022

Formula

G.f.: 1/((1-x^2)^3*(1-x-x^2)).
a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 6*a(n-4) + 3*a(n-5) + 4*a(n-6) - a(n-7) - a(n-8);
a(n) = Sum_{k=0..n} Fibonacci(n-k+1)*binomial(k/2 +2, 2)*(1+(-1)^k)/2.
a(n) = Fibonacci(n+4) + (-1)^n*(n^2 + 4*n + 7)/16 - (n^2 + 12*n + 39)/16. - G. C. Greubel, Jul 25 2022

A099573 Reverse of number triangle A054450.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 5, 1, 1, 5, 5, 8, 8, 1, 1, 6, 6, 12, 12, 13, 1, 1, 7, 7, 17, 17, 21, 21, 1, 1, 8, 8, 23, 23, 33, 33, 34, 1, 1, 9, 9, 30, 30, 50, 50, 55, 55, 1, 1, 10, 10, 38, 38, 73, 73, 88, 88, 89, 1, 1, 11, 11, 47, 47, 103, 103, 138, 138, 144, 144, 1, 1, 12, 12, 57, 57, 141, 141, 211, 211, 232, 232, 233
Offset: 0

Author

Paul Barry, Oct 23 2004

Keywords

Examples

			First few rows of the array:
  1, 1, 2, 3,  5,  8, ... (A000045)
  1, 1, 3, 4,  8, 12, ... (A052952)
  1, 1, 4, 5, 12, 17, ... (A054451)
  1, 1, 5, 6, 17, 23, ... (A099571)
  1, 1, 6, 7, 23, 30, ... (A099572)
  ...
Triangle begins as:
  1;
  1, 1;
  1, 1, 2;
  1, 1, 3, 3;
  1, 1, 4, 4,  5;
  1, 1, 5, 5,  8,  8;
  1, 1, 6, 6, 12, 12, 13;
  1, 1, 7, 7, 17, 17, 21, 21;
  1, 1, 8, 8, 23, 23, 33, 33, 34;
  1, 1, 9, 9, 30, 30, 50, 50, 55, 55;
		

Crossrefs

Cf. A099571, A099572, A099574 (diagonal sums), A099575.

Programs

  • Magma
    [(&+[Binomial(n-j,j): j in [0..Floor(k/2)]]): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 25 2022
    
  • Mathematica
    T[n_, k_]:= Sum[Binomial[n-j,j], {j,0,Floor[k/2]}];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 25 2022 *)
  • SageMath
    def A099573(n,k): return sum(binomial(n-j, j) for j in (0..(k//2)))
    flatten([[A099573(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 25 2022

Formula

Number triangle T(n, k) = Sum_{j=0..floor(k/2)} binomial(n-j, j) if k <= n, 0 otherwise.
T(n, n) = A000045(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A099574(n).
Sum_{k=0..n} T(n, k) = A029907(n+1).
Antidiagonals of the following array: the first row equals the Fibonacci numbers, (1, 1, 2, 3, 5, ...), and the (n+1)-st row is obtained by the matrix-vector product A128174 * n-th row. - Gary W. Adamson, Jan 19 2011
From G. C. Greubel, Jul 25 2022: (Start)
T(n, n-1) = A052952(n-1), n >= 1.
T(n, n-2) = A054451(n-2), n >= 2.
T(n, n-3) = A099571(n-3), n >= 3.
T(n, n-4) = A099572(n-4), n >= 4. (End)

A176123 Irregular triangle, read by rows, T(n, k) = binomial(n-(k-1),k-1), 1 <= k <= floor(n/2-1).

Original entry on oeis.org

1, 1, 1, 5, 1, 6, 1, 7, 15, 1, 8, 21, 1, 9, 28, 35, 1, 10, 36, 56, 1, 11, 45, 84, 70, 1, 12, 55, 120, 126, 1, 13, 66, 165, 210, 126, 1, 14, 78, 220, 330, 252, 1, 15, 91, 286, 495, 462, 210, 1, 16, 105, 364, 715, 792, 462, 1, 17, 120, 455, 1001, 1287, 924, 330, 1, 18, 136, 560, 1365, 2002, 1716, 792
Offset: 4

Author

Roger L. Bagula, Dec 07 2010

Keywords

Comments

The row sum is A099572 which has limiting ratio of (1+sqrt(5))/2.
This is Pascal's triangle (A007318) read along upward sloping diagonals and truncated.

Examples

			Triangle begins as:
  1;
  1;
  1,  5;
  1,  6;
  1,  7, 15;
  1,  8, 21;
  1,  9, 28,  35;
  1, 10, 36,  56;
  1, 11, 45,  84,  70;
  1, 12, 55, 120, 126;
  1, 13, 66, 165, 210, 126;
		

Crossrefs

Programs

  • GAP
    Flat(List([4..20], n-> List([1..Int((n-2)/2)], k-> Binomial(n-k+1,k-1) ))); # G. C. Greubel, Nov 27 2019
  • Magma
    [Binomial(n-k+1,k-1): k in [1..Floor((n-2)/2)], n in [4..20]]; // G. C. Greubel, Nov 27 2019
    
  • Maple
    seq(seq( binomial(n-k+1, k-1), k=1..floor((n-2)/2)), n=4..20); # G. C. Greubel, Nov 27 2019
  • Mathematica
    Table[Binomial[n-k+1, k-1], {n,4,20}, {k, Floor[(n-2)/2]}]//Flatten
  • PARI
    T(n,k) = binomial(n-k+1,k-1);
    for(n=4,20, for(k=1, (n-2)\2, print1(T(n,k), ", "))) \\ G. C. Greubel, Nov 27 2019
    
  • Sage
    [[binomial(n-k+1,k-1) for k in (1..floor((n-2)/2))] for n in (4..20)] # G. C. Greubel, Nov 27 2019
    

Extensions

Edited by N. J. A. Sloane, Dec 09 2010
More terms added by G. C. Greubel, Nov 27 2019
Showing 1-4 of 4 results.