A054450 Triangle of partial row sums of unsigned triangle A049310(n,m), n >= m >= 0 (Chebyshev S-polynomials).
1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 4, 4, 1, 1, 8, 8, 5, 5, 1, 1, 13, 12, 12, 6, 6, 1, 1, 21, 21, 17, 17, 7, 7, 1, 1, 34, 33, 33, 23, 23, 8, 8, 1, 1, 55, 55, 50, 50, 30, 30, 9, 9, 1, 1, 89, 88, 88, 73, 73, 38, 38, 10, 10, 1, 1, 144, 144, 138, 138, 103, 103, 47, 47, 11, 11, 1, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 2, 1, 1; 3, 3, 1, 1; 5, 4, 4, 1, 1; 8, 8, 5, 5, 1, 1; 13, 12, 12, 6, 6, 1, 1; 21, 21, 17, 17, 7, 7, 1, 1; 34, 33, 33, 23, 23, 8, 8, 1, 1; 55, 55, 50, 50, 30, 30, 9, 9, 1, 1; 89, 88, 88, 73, 73, 38, 38, 10, 10, 1, 1; ... Fourth row polynomial (n=3): p(3,x) = 3 + 3*x + x^2 + x^3.
Links
Crossrefs
Programs
-
Magma
A049310:= func< n,k | ((n+k) mod 2) eq 0 select (-1)^(Floor((n+k)/2)+k)*Binomial(Floor((n+k)/2), k) else 0 >; A054450:= func< n,k | (&+[Abs(A049310(n,j)): j in [k..n]]) >; [A054450(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 25 2022
-
Mathematica
A049310[n_, k_]:= A049310[n, k]= If[n<0, 0, If[k==n, 1, A049310[n-1, k-1] - A049310[n-2, k] ]]; A054450[n_, k_]:= A054450[n, k]= Sum[Abs[A049310[n,j]], {j,k,n}]; Table[A054450[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 25 2022 *)
-
SageMath
@CachedFunction def A049310(n, k): if (n<0): return 0 elif (k==n): return 1 else: return A049310(n-1, k-1) - A049310(n-2, k) def A054450(n,k): return sum( abs(A049310(n,j)) for j in (k..n) ) flatten([[A054450(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 25 2022
Formula
T(n, m) = Sum_{k=m..n} |A049310(n, k)| (sequence of partial row sums in column m).
Column m recursion: T(n, m) = Sum_{j=m..n} T(j-1, m)*|A049310(n-j, 0)| + |A049310(n, m)|, n >= m >= 0, a(n, m) := 0 if n
T(n, 0) = A000045(n+1).
T(n, 1) = A052952(n-1).
T(n, 2) = A054451(n-2).
G.f. for column m: Fib(x)*(x/(1-x^2))^m, m >= 0, with Fib(x) = g.f. A000045(n+1).
The corresponding square array has T(n, k) = Sum_{j=0..floor(k/2)} binomial(n+k-j, j). - Paul Barry, Oct 23 2004
From G. C. Greubel, Jul 25 2022: (Start)
T(n, 3) = A099571(n-3).
T(n, 4) = A099572(n-4).
T(n, n) = T(n, n-1) = A000012(n).
T(n, n-2) = A000027(n), n >= 2.
T(n, n-3) = A000027(n), n >= 3.
T(n, n-4) = A152948(n), n >= 4.
T(n, n-5) = A152948(n), n >= 5.
T(n, n-6) = A038793(n), n >= 6.
T(n, n-8) = A038794(n), n >= 8.
T(n, n-10) = A038795(n), n >= 10.
T(n, n-12) = A038796(n), n >= 12. (End)
A099572 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+4, k).
1, 1, 6, 7, 23, 30, 73, 103, 211, 314, 581, 895, 1560, 2455, 4135, 6590, 10890, 17480, 28590, 46070, 74946, 121016, 196326, 317342, 514123, 831465, 1346148, 2177613, 3524441, 5702054, 9227311, 14929365, 24157645, 39087010, 63245795, 102332805
Offset: 0
Comments
Fifth column of triangle A054450. In general Sum_{k=0..floor(n/2)} binomial(n-k+r, k), r>=0, will have g.f. 1/((1-x^2)^r*(1-x-x^2)) and for r>0, a(n) = Sum_{k=0..n} Fibonacci(n-k+1)*binomial(k/2+r-1, r-1)*(1+(-1)^k)/2.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,5,-4,-10,6,10,-4,-5,1,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x^2)^4*(1-x-x^2)) )); // G. C. Greubel, Jul 25 2022 -
Mathematica
Table[Fibonacci(n+5) +(-1)^n*(n^3+9*n^2+35*n+33)/96 -(n^3+21*n^2+155*n+417)/96, {n,0,40}] (* G. C. Greubel, Jul 25 2022 *)
-
SageMath
[fibonacci(n+5) + (-1)^n*(n^3+9*n^2+35*n+33)/96 - (n^3+21*n^2+155*n + 417)/96 for n in (0..40)] # G. C. Greubel, Jul 25 2022
Formula
G.f.: 1/((1-x^2)^4*(1-x-x^2)). - corrected by R. J. Mathar, Feb 20 2011
a(n) = Sum_{k=0..n} Fibonacci(n-k+1)*binomial(k/2+3, 3)*((1+(-1)^k)/2).
a(n) = Fibonacci(n+5) + (-1)^n*(n^3 + 9*n^2 + 35*n + 33)/96 - (n^3 + 21*n^2 + 155*n + 417)/96. - G. C. Greubel, Jul 25 2022
A099573 Reverse of number triangle A054450.
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 5, 1, 1, 5, 5, 8, 8, 1, 1, 6, 6, 12, 12, 13, 1, 1, 7, 7, 17, 17, 21, 21, 1, 1, 8, 8, 23, 23, 33, 33, 34, 1, 1, 9, 9, 30, 30, 50, 50, 55, 55, 1, 1, 10, 10, 38, 38, 73, 73, 88, 88, 89, 1, 1, 11, 11, 47, 47, 103, 103, 138, 138, 144, 144, 1, 1, 12, 12, 57, 57, 141, 141, 211, 211, 232, 232, 233
Offset: 0
Examples
First few rows of the array: 1, 1, 2, 3, 5, 8, ... (A000045) 1, 1, 3, 4, 8, 12, ... (A052952) 1, 1, 4, 5, 12, 17, ... (A054451) 1, 1, 5, 6, 17, 23, ... (A099571) 1, 1, 6, 7, 23, 30, ... (A099572) ... Triangle begins as: 1; 1, 1; 1, 1, 2; 1, 1, 3, 3; 1, 1, 4, 4, 5; 1, 1, 5, 5, 8, 8; 1, 1, 6, 6, 12, 12, 13; 1, 1, 7, 7, 17, 17, 21, 21; 1, 1, 8, 8, 23, 23, 33, 33, 34; 1, 1, 9, 9, 30, 30, 50, 50, 55, 55;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
[(&+[Binomial(n-j,j): j in [0..Floor(k/2)]]): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 25 2022
-
Mathematica
T[n_, k_]:= Sum[Binomial[n-j,j], {j,0,Floor[k/2]}]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 25 2022 *)
-
SageMath
def A099573(n,k): return sum(binomial(n-j, j) for j in (0..(k//2))) flatten([[A099573(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 25 2022
Formula
Number triangle T(n, k) = Sum_{j=0..floor(k/2)} binomial(n-j, j) if k <= n, 0 otherwise.
T(n, n) = A000045(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A099574(n).
Sum_{k=0..n} T(n, k) = A029907(n+1).
Antidiagonals of the following array: the first row equals the Fibonacci numbers, (1, 1, 2, 3, 5, ...), and the (n+1)-st row is obtained by the matrix-vector product A128174 * n-th row. - Gary W. Adamson, Jan 19 2011
From G. C. Greubel, Jul 25 2022: (Start)
T(n, n-1) = A052952(n-1), n >= 1.
T(n, n-2) = A054451(n-2), n >= 2.
T(n, n-3) = A099571(n-3), n >= 3.
T(n, n-4) = A099572(n-4), n >= 4. (End)
Comments