cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A172050 A008585+A029907.

Original entry on oeis.org

0, 4, 8, 13, 20, 30, 46, 72, 116, 191, 320, 542, 924, 1580, 2704, 4625, 7900, 13470, 22922, 38928, 65980, 111619, 188488, 317758, 534840, 898900, 1508696, 2528917, 4233956, 7080606, 11828710, 19741272, 32916164, 54835655, 91276304
Offset: 0

Views

Author

Mats Granvik, Jan 24 2010

Keywords

Crossrefs

Cf. A008585, A029907, (1-((-1)^a(n+4)))/2 = A172051.

A002878 Bisection of Lucas sequence: a(n) = L(2*n+1).

Original entry on oeis.org

1, 4, 11, 29, 76, 199, 521, 1364, 3571, 9349, 24476, 64079, 167761, 439204, 1149851, 3010349, 7881196, 20633239, 54018521, 141422324, 370248451, 969323029, 2537720636, 6643838879, 17393796001, 45537549124, 119218851371, 312119004989, 817138163596, 2139295485799
Offset: 0

Views

Author

Keywords

Comments

In any generalized Fibonacci sequence {f(i)}, Sum_{i=0..4n+1} f(i) = a(n)*f(2n+2). - Lekraj Beedassy, Dec 31 2002
The continued fraction expansion for F((2n+1)*(k+1))/F((2n+1)*k), k>=1 is [a(n),a(n),...,a(n)] where there are exactly k elements (F(n) denotes the n-th Fibonacci number). E.g., continued fraction for F(12)/F(9) is [4, 4,4]. - Benoit Cloitre, Apr 10 2003
See A135064 for a possible connection with Galois groups of quintics.
Sequence of all positive integers k such that continued fraction [k,k,k,k,k,k,...] belongs to Q(sqrt(5)). - Thomas Baruchel, Sep 15 2003
All positive integer solutions of Pell equation a(n)^2 - 5*b(n)^2 = -4 together with b(n)=A001519(n), n>=0.
a(n) = L(n,-3)*(-1)^n, where L is defined as in A108299; see also A001519 for L(n,+3).
Inverse binomial transform of A030191. - Philippe Deléham, Oct 04 2005
General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4, lim_{n->infinity} a(n) = x*(k*x+1)^n, k =(a(1)-3), x=(1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives A030221. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - Ctibor O. Zizka, Sep 02 2008
Let r = (2n+1), then a(n), n>0 = Product_{k=1..floor((r-1)/2)} (1 + sin^2 k*Pi/r); e.g., a(3) = 29 = (3.4450418679...)*(4.801937735...)*(1.753020396...). - Gary W. Adamson, Nov 26 2008
a(n+1) is the Hankel transform of A001700(n)+A001700(n+1). - Paul Barry, Apr 21 2009
a(n) is equal to the permanent of the (2n) X (2n) tridiagonal matrix with sqrt(5)'s along the main diagonal, i's along the superdiagonal and the subdiagonal (i is the imaginary unit), and 0's everywhere else. - John M. Campbell, Jun 09 2011
Conjecture: for n > 0, a(n) = sqrt(Fibonacci(4*n+3) + Sum_{k=2..2*n} Fibonacci(2*k)). - Alex Ratushnyak, May 06 2012
Pisano period lengths: 1, 3, 4, 3, 2, 12, 8, 6, 12, 6, 5, 12, 14, 24, 4, 12, 18, 12, 9, 6, ... . - R. J. Mathar, Aug 10 2012
The continued fraction [a(n); a(n), a(n), ...] = phi^(2n+1), where phi is the golden ratio, A001622. - Thomas Ordowski, Jun 05 2013
Solutions (x, y) = (a(n), a(n+1)) satisfying x^2 + y^2 = 3xy + 5. - Michel Lagneau, Feb 01 2014
Conjecture: except for the number 3, a(n) are the numbers such that a(n)^2+2 are Lucas numbers. - Michel Lagneau, Jul 22 2014
Comment on the preceding conjecture: It is clear that all a(n) satisfy a(n)^2 + 2 = L(2*(2*n+1)) due to the identity (17 c) of Vajda, p. 177: L(2*n) + 2*(-1)^n = L(n)^2 (take n -> 2*n+1). - Wolfdieter Lang, Oct 10 2014
Limit_{n->oo} a(n+1)/a(n) = phi^2 = phi + 1 = (3+sqrt(5))/2. - Derek Orr, Jun 18 2015
If d[k] denotes the sequence of k-th differences of this sequence, then d[0](0), d[1](1), d[2](2), d[3](3), ... = A048876, cf. message to SeqFan list by P. Curtz on March 2, 2016. - M. F. Hasler, Mar 03 2016
a(n-1) and a(n) are the least phi-antipalindromic numbers (A178482) with 2*n and 2*n+1 digits in base phi, respectively. - Amiram Eldar, Jul 07 2021
Triangulate (hyperbolic) 2-space such that around every vertex exactly 7 triangles touch. Call any 7 triangles having a common vertex the first layer and let the (n+1)-st layer be all triangles that do not appear in any of the first n layers and have a common vertex with the n-th layer. Then the n-th layer contains 7*a(n-1) triangles. E.g., the first layer (by definition) contains 7 triangles, the second layer (the "ring" of triangles around the first layer) consists of 28 triangles, the third layer (the next "ring") consists of 77 triangles, and so on. - Nicolas Nagel, Aug 13 2022

Examples

			G.f. = 1 + 4*x + 11*x^2 + 29*x^3 + 76*x^4 + 199*x^5 + 521*x^6 + ... - _Michael Somos_, Jan 13 2019
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Steven Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.

Crossrefs

Cf. A000204. a(n) = A060923(n, 0), a(n)^2 = A081071(n).
Cf. A005248 [L(2n) = bisection (even n) of Lucas sequence].
Cf. A001906 [F(2n) = bisection (even n) of Fibonacci sequence], A000045, A002315, A004146, A029907, A113224, A153387, A153416, A178482, A192425, A285992 (prime subsequence).
Cf. similar sequences of the type k*F(n)*F(n+1)+(-1)^n listed in A264080.

Programs

  • GAP
    List([0..40], n-> Lucas(1,-1,2*n+1)[2] ); # G. C. Greubel, Jul 15 2019
    
  • Haskell
    a002878 n = a002878_list !! n
    a002878_list = zipWith (+) (tail a001906_list) a001906_list
    -- Reinhard Zumkeller, Jan 11 2012
    
  • Magma
    [Lucas(2*n+1): n in [0..40]]; // Vincenzo Librandi, Apr 16 2011
    
  • Maple
    A002878 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[1,4]);
        else
            3*procname(n-1)-procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Apr 30 2017
  • Mathematica
    a[n_]:= FullSimplify[GoldenRatio^n - GoldenRatio^-n]; Table[a[n], {n, 1, 40, 2}]
    a[1]=1; a[2]=4; a[n_]:=a[n]= 3a[n-1] -a[n-2]; Array[a, 40]
    LinearRecurrence[{3, -1}, {1, 4}, 41] (* Jean-François Alcover, Sep 23 2017 *)
    Table[Sum[(-1)^Floor[k/2] Binomial[n -Floor[(k+1)/2], Floor[k/2]] 3^(n - k), {k, 0, n}], {n, 0, 40}] (* L. Edson Jeffery, Feb 26 2018 *)
    a[ n_] := Fibonacci[2n] + Fibonacci[2n+2]; (* Michael Somos, Jul 31 2018 *)
    a[ n_]:= LucasL[2n+1]; (* Michael Somos, Jan 13 2019 *)
  • PARI
    a(n)=fibonacci(2*n)+fibonacci(2*n+2) \\ Charles R Greathouse IV, Jun 16 2011
    
  • PARI
    for(n=1,40,q=((1+sqrt(5))/2)^(2*n-1);print1(contfrac(q)[1],", ")) \\ Derek Orr, Jun 18 2015
    
  • PARI
    Vec((1+x)/(1-3*x+x^2) + O(x^40)) \\ Altug Alkan, Oct 26 2015
    
  • Python
    a002878 = [1, 4]
    for n in range(30): a002878.append(3*a002878[-1] - a002878[-2])
    print(a002878) # Gennady Eremin, Feb 05 2022
  • Sage
    [lucas_number2(2*n+1,1,-1) for n in (0..40)] # G. C. Greubel, Jul 15 2019
    

Formula

a(n+1) = 3*a(n) - a(n-1).
G.f.: (1+x)/(1-3*x+x^2). - Simon Plouffe in his 1992 dissertation
a(n) = S(2*n, sqrt(5)) = S(n, 3) + S(n-1, 3); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 3) = A001906(n+1) (even-indexed Fibonacci numbers).
a(n) ~ phi^(2*n+1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then (-1)^n*q(n, -1) = a(n). - Benoit Cloitre, Nov 10 2002
a(n) = A005248(n+1) - A005248(n) = -1 + Sum_{k=0..n} A005248(k). - Lekraj Beedassy, Dec 31 2002
a(n) = 2^(-n)*A082762(n) = 4^(-n)*Sum_{k>=0} binomial(2*n+1, 2*k)*5^k; see A091042. - Philippe Deléham, Mar 01 2004
a(n) = (-1)^n*Sum_{k=0..n} (-5)^k*binomial(n+k, n-k). - Benoit Cloitre, May 09 2004
From Paul Barry, May 27 2004: (Start)
Both bisection and binomial transform of A000204.
a(n) = Fibonacci(2n) + Fibonacci(2n+2). (End)
Sequence lists the numerators of sinh((2*n-1)*psi) where the denominators are 2; psi=log((1+sqrt(5))/2). Offset 1. a(3)=11. - Al Hakanson (hawkuu(AT)gmail.com), Mar 25 2009
a(n) = A001906(n) + A001906(n+1). - Reinhard Zumkeller, Jan 11 2012
a(n) = floor(phi^(2n+1)), where phi is the golden ratio, A001622. - Thomas Ordowski, Jun 10 2012
a(n) = A014217(2*n+1) = A014217(2*n+2) - A014217(2*n). - Paul Curtz, Jun 11 2013
Sum_{n >= 0} 1/(a(n) + 5/a(n)) = 1/2. Compare with A005248, A001906, A075796. - Peter Bala, Nov 29 2013
a(n) = lim_{m->infinity} Fibonacci(m)^(4n+1)*Fibonacci(m+2*n+1)/ Sum_{k=0..m} Fibonacci(k)^(4n+2). - Yalcin Aktar, Sep 02 2014
From Peter Bala, Mar 22 2015: (Start)
The aerated sequence (b(n))n>=1 = [1, 0, 4, 0, 11, 0, 29, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -1, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy.
b(n) = (1/2)*((-1)^n - 1)*F(n) + (1 + (-1)^(n-1))*F(n+1), where F(n) is a Fibonacci number. The o.g.f. is x*(1 + x^2)/(1 - 3*x^2 + x^4).
Exp( Sum_{n >= 1} 2*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 2*F(n)*x^n.
Exp( Sum_{n >= 1} (-2)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 2*F(n)*(-x)^n.
Exp( Sum_{n >= 1} 4*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 4*A029907(n)*x^n.
Exp( Sum_{n >= 1} (-4)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 4*A029907(n)*(-x)^n. Cf. A002315, A004146, A113224 and A192425. (End)
a(n) = sqrt(5*F(2*n+1)^2-4), where F(n) = A000045(n). - Derek Orr, Jun 18 2015
For n > 1, a(n) = 5*F(2*n-1) + L(2*n-3) with F(n) = A000045(n). - J. M. Bergot, Oct 25 2015
For n > 0, a(n) = L(n-1)*L(n+2) + 4*(-1)^n. - J. M. Bergot, Oct 25 2015
For n > 2, a(n) = a(n-2) + F(n+2)^2 + F(n-3)^2 = L(2*n-3) + F(n+2)^2 + F(n-3)^2. - J. M. Bergot, Feb 05 2016 and Feb 07 2016
E.g.f.: ((sqrt(5) - 5)*exp((3-sqrt(5))*x/2) + (5 + sqrt(5))*exp((3+sqrt(5))*x/2))/(2*sqrt(5)). - Ilya Gutkovskiy, Apr 24 2016
a(n) = Sum_{k=0..n} (-1)^floor(k/2)*binomial(n-floor((k+1)/2), floor(k/2))*3^(n-k). - L. Edson Jeffery, Feb 26 2018
a(n)*F(m+2n-1) = F(m+4n-2)-F(m), with Fibonacci number F(m), empirical observation. - Dan Weisz, Jul 30 2018
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Jul 31 2018
Sum_{n>=0} 1/a(n) = A153416. - Amiram Eldar, Nov 11 2020
a(n) = Product_{k=1..n} (1 + 4*sin(2*k*Pi/(2*n+1))^2). - Seiichi Manyama, Apr 30 2021
Sum_{n>=0} (-1)^n/a(n) = (1/sqrt(5)) * A153387 (Carlitz, 1967). - Amiram Eldar, Feb 05 2022
The continued fraction [a(n);a(n),a(n),...] = phi^(2*n+1), with phi = A001622. - A.H.M. Smeets, Feb 25 2022
a(n) = 2*sinh((2*n + 1)*arccsch(2)). - Peter Luschny, May 25 2022
This gives the sequence with 2 1's prepended: b(1)=b(2)=1 and, for k >= 3, b(k) = Sum_{j=1..k-2} (2^(k-j-1) - 1)*b(j). - Neal Gersh Tolunsky, Oct 28 2022 (formula due to Jon E. Schoenfield)
For n > 0, a(n) = 1 + 1/(Sum_{k>=1} F(k)/phi^(2*n*k + k)). - Diego Rattaggi, Nov 08 2023
From Peter Bala, Apr 16 2025: (Start)
a(3*n+1) = a(n)^3 + 3*a(n).
a(5*n+2) = a(n)^5 + 5*a(n)^3 + 5*a(n).
a(7*n+3) = a(n)^7 + 7*a(n)^5 + 14*a(n)^3 + 7*a(n).
For the coefficients see A034807.
The general result is: for k >= 0, a(k*n + (k-1)/2) = 2 * T(k, a(n)/2), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind and a(n) = ((1 + sqrt(5))/2)^(2*n+1) + ((1 - sqrt(5))/2)^(2*n+1).
Sum_{n >= 0} (-1)^n/a(n) = (1/4)* (theta_3(phi) - theta_3(phi^2)) = 0.815947983588122..., where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122) and phi = (sqrt(5) - 1)/2. See Borwein and Borwein, Exercise 3 a, p. 94 and Carlitz, 1967. (End)
From Peter Bala, May 15 2025: (Start)
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/5 (telescoping series: 5/(a(n) - 1/a(n)) = 1/A001906(n+1) + 1/A001906(n) ).
More generally, for k >= 1, Sum_{n >= 1} (-1)^(n+1)/(a(k*n) - s(k)/a(k*n)) = 1/(1 + a(k)) where s(k) = a(0) + a(1) + ... + a(k-1) = Lucas(2*k) - 2.
For k >= 1, Sum_{n >= 1} (-1)^(n+1)/(a(n) + L(2*k)^2/a(n)) = (1/5) * A064170(k+2).
Sum_{n >= 1} 1/(a(n) + 9/a(n)) = 3/10 (follows from 1/(a(n) + 9/a(n)) = L(2*n)/A081076(n) - L(2*n+2)/A081076(n+1) ).
More generally, it appears that for k >= 1, Sum_{n >= 1} 1/(a(n) + L(2*k)^2/a(n)) is rational.
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(5) [telescoping product: Product_{k = 1..n} ((a(k) + 1)/(a(k) - 1))^2 = 5*(1 - 4/A240926(n+1)) ]. (End)

Extensions

Chebyshev and Pell comments from Wolfdieter Lang, Aug 31 2004

A023610 Convolution of Fibonacci numbers and {F(2), F(3), F(4), ...}.

Original entry on oeis.org

1, 3, 7, 15, 30, 58, 109, 201, 365, 655, 1164, 2052, 3593, 6255, 10835, 18687, 32106, 54974, 93845, 159765, 271321, 459743, 777432, 1312200, 2211025, 3719643, 6248479, 10482351, 17562870, 29391490, 49132669, 82048737, 136884293, 228160495, 379975140, 632293452
Offset: 0

Views

Author

Keywords

Comments

a(n-2) + 1 is the number of (3412,1243)-, (3412,2134)- and (3412,1324)-avoiding involutions in S_n, n>1. - Ralf Stephan, Jul 06 2003
The number of terms in all ordered partitions of (n+1) using only ones and twos. For example, a(3)=15 because there are 15 terms in 1+1+1+1;2+1+1;1+2+1;1+1+2;2+2 - Geoffrey Critzer, Apr 07 2008
a(n) is the number of n-matchings in the graph obtained by a zig-zag triangulation of a convex (2n+1)-gon. Example: a(2)=7 because in the triangulation of the convex pentagon ABCDEA with diagonals AD and AC we have 7 2-matchings: {AB,CD},{AB,DE},{BC,AD},{BC,DE},{BC,EA},{CD,EA} and {DE,AC}. - Emeric Deutsch, Dec 25 2004
Partial sums of A029907. First differences of A002940. - Peter Bala, Oct 24 2007
Equals row sums of triangle A144154. - Gary W. Adamson, Sep 12 2008
Equals the number of 1's in Fibonacci Maximal notation for subsets of
(1, 2, 3, 5, 8, 13, ...) terms. For example (cf. A181630): 4, 5, and 6 are the 3 terms 101, 110, and 111 in Fibonacci Maximal. Total number of 1's for those terms = 7 = a(2). - Gary W. Adamson, Nov 02 2010
a(n) is half the number of strokes needed to draw all the domino tilings of a 2 X (n+2) rectangle. - Roberto Tauraso, Mar 15 2014
a(n) is the total number of 1's in all (n+1)-bit dual Zeckendorf representations of integers (A104326). For example, a(2) = 7 counts the 1's in 101, 110, 111. - Shenghui Yang, Feb 09 2025

Crossrefs

Cf. A000045 (Fibonacci numbers).
Column 1 of triangle A063967.

Programs

  • Haskell
    a023610 n = a023610_list !! n
    a023610_list = f [1] $ drop 3 a000045_list where
       f us (v:vs) = (sum $ zipWith (*) us $ tail a000045_list) : f (v:us) vs
    -- Reinhard Zumkeller, Jan 18 2014
    
  • Mathematica
    Table[Sum[Binomial[n - i, i]*(n - i), {i, 0, n}], {n, 1, 33}] (* Geoffrey Critzer, May 04 2009 *)
  • PARI
    a(n)=(n+2)*fibonacci(n+4)/5+(n-1)*fibonacci(n+2)/5 \\ Charles R Greathouse IV, Jun 11 2015
  • Sage
    def A023610():
        a, b, c, d = 1, 3, 7, 15
        while True:
            yield a
            a, b, c, d = b, c, d, 2*(d-b)+c-a
    a = A023610(); [next(a) for i in range(33)]  # Peter Luschny, Nov 20 2013
    

Formula

O.g.f.: (x+1)/(1-x-x^2)^2. - Len Smiley, Dec 11 2001
a(n) = (1/5)*((n+2)*F(n+4) + (n-1)*F(n+2)), with F(n)=A000045(n). - Ralf Stephan, Jul 06 2003
a(n) = Sum_{k=0..n+1} (n-k+1)*binomial(n-k+1, k). - Paul Barry, Nov 05 2005
Recurrence: a(n+2) = a(n+1) + a(n) + Fib(n+4), n >= 0. For n >= 2, a(n-2) = (-1)^n*((-2n+3)*Fib(-n) - (-n)*Fib(-n-1))/5 = (-1)^n*A010049(-n), the second-order Fibonacci numbers of negative index, where Fib(-n) = (-1)^(n+1)*Fib(n). - Peter Bala, Oct 24 2007
a(n) = (n+1)*F(n+2) - A001629(n+1) where F(n) is the n-th Fibonacci number. - Geoffrey Critzer, Apr 07 2008
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4), n >= 4. - L. Edson Jeffery, Mar 29 2013
a(n+1) = A004798(n) + A000045(n+2) for n >= 0. - John Molokach, Jul 04 2013
a(n) = A001629(n+1) + A001629(n+2). - Philippe Deléham, Oct 30 2013
E.g.f.: exp(x/2)*(5*(5 + 7*x)*cosh(sqrt(5)*x/2) + sqrt(5)*(11 + 15*x)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 04 2023

A010049 Second-order Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 3, 5, 10, 18, 33, 59, 105, 185, 324, 564, 977, 1685, 2895, 4957, 8462, 14406, 24465, 41455, 70101, 118321, 199368, 335400, 563425, 945193, 1583643, 2650229, 4430290, 7398330, 12342849, 20573219, 34262337, 57013865, 94800780, 157517532, 261545777
Offset: 0

Views

Author

Keywords

Comments

Number of parts in all compositions of n+1 with no 1's. E.g. a(5)=10 because in the compositions of 6 with no part equal to 1, namely 6,4+2,3+3,2+4,2+2+2, the total number of parts is 10. - Emeric Deutsch, Dec 10 2003

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 83.
  • Cornelius Gerrit Lekkerkerker, Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci, Simon Stevin, Vol. 29 (1952), pp. 190-195.

Crossrefs

Programs

  • GAP
    a:=List([0..40],n->Sum([0..n-1],k->(k+1)*Binomial(n-k-1,k)));; Print(a); # Muniru A Asiru, Dec 31 2018
    
  • Haskell
    a010049 n = a010049_list !! n
    a010049_list = uncurry c $ splitAt 1 a000045_list where
       c us (v:vs) = (sum $ zipWith (*) us (1 : reverse us)) : c (v:us) vs
    -- Reinhard Zumkeller, Nov 01 2013
    
  • Magma
    [((2*n+3)*Fibonacci(n)-n*Fibonacci(n-1))/5: n in [0..40]]; // Vincenzo Librandi, Dec 31 2018
    
  • Maple
    with(combinat): A010049 := proc(n) options remember; if n <= 1 then n else A010049(n-1)+A010049(n-2)+fibonacci(n-2); fi; end;
  • Mathematica
    CoefficientList[Series[(z - z^2)/(z^2 + z - 1)^2, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
    CoefficientList[Series[x (1 - x) / (1 - x - x^2)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{2, 1, -2, -1}, {0, 1, 1, 3}, 38] (* Amiram Eldar, Jan 11 2020 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,-2,1,2]^n*[0;1;1;3])[1,1] \\ Charles R Greathouse IV, Jul 20 2016
    
  • Sage
    def A010049():
        a, b, c, d = 0, 1, 1, 3
        while True:
            yield a
            a, b, c, d = b, c, d, 2*(d-b)+c-a
    a = A010049(); [next(a) for i in range(38)]  # Peter Luschny, Nov 20 2013
    
  • SageMath
    def A010049(n): return (1/5)*(n*lucas_number2(n-1, 1, -1) + 3*fibonacci(n))
    [A010049(n) for n in (0..40)] # G. C. Greubel, Apr 06 2022

Formula

First differences of A001629.
From Wolfdieter Lang, May 03 2000: (Start)
a(n) = ((2*n+3)*F(n) - n*F(n-1))/5, F(n)=A000045(n) (Fibonacci numbers) (Turban reference eq.(2.12)).
G.f.: x*(1-x)/(1-x-x^2)^2. (Turban reference eq.(2.10)). (End)
Recurrence: a(0)=0, a(1)=1, a(2)=1, a(n+2) = a(n+1) + a(n) + F(n). - Benoit Cloitre, Sep 02 2002
Set A(n) = a(n+1) + a(n-1), B(n) = a(n+1) - a(n-1). Then A(n+2) = A(n+1) + A(n) + Lucas(n) and B(n+2) = B(n+1) + B(n) + Fibonacci(n). The polynomials F_2(n,-x) = Sum_{k=0..n} C(n,k)*a(n-k)*(-x)^k appear to satisfy a Riemann hypothesis; their zeros appear to lie on the vertical line Re x = 1/2 in the complex plane. Compare with the polynomials F(n,-x) defined in A094440. For a similar conjecture for polynomials involving the second-order Lucas numbers see A134410. - Peter Bala, Oct 24 2007
a(n) = -A001629(n+2) + 2*A001629(n+1) + A000045(n+1). - R. J. Mathar, Nov 16 2007
Starting (1, 1, 3, 5, 10, ...), = row sums of triangle A135830. - Gary W. Adamson, Nov 30 2007
a(n) = F(n) + Sum_{k=0..n-1} F(k)*F(n-1-k), where F = A000045. - Reinhard Zumkeller, Nov 01 2013
a(n) = Sum_{k=0..n-1} (k+1)*binomial(n-k-1, k). - Peter Luschny, Nov 20 2013
a(n) = Sum_{i=0..n-1} Sum_{j=0..i} F(j-1)*F(i-j-1), where F = A000045. - Carlos A. Rico A., Jul 14 2016
a(n) = Sum_{k = F(n+1)..F(n+2)-1} A007895(k), where F(n) is the n-th Fibonacci number (Lekkerkerker, 1952). - Amiram Eldar, Jan 11 2020
a(n) = (1/5)*(n*A000032(n-1) + 3*A000045(n)). - G. C. Greubel, Apr 06 2022
E.g.f.: 2*exp(x/2)*(5*x*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 04 2023

Extensions

More terms from Emeric Deutsch, Dec 10 2003

A038792 Rectangular array defined by T(i,1) = T(1,j) = 1 for i >= 1 and j >= 1; T(i,j) = max(T(i-1,j) + T(i-1,j-1), T(i-1,j-1) + T(i,j-1)) for i >= 2, j >= 2, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 8, 8, 5, 1, 1, 6, 12, 13, 12, 6, 1, 1, 7, 17, 21, 21, 17, 7, 1, 1, 8, 23, 33, 34, 33, 23, 8, 1, 1, 9, 30, 50, 55, 55, 50, 30, 9, 1, 1, 10, 38, 73, 88, 89, 88, 73, 38, 10, 1, 1, 11, 47, 103, 138, 144, 144, 138, 103, 47, 11, 1
Offset: 1

Views

Author

Clark Kimberling, May 02 2000

Keywords

Comments

Antidiagonal sums: A029907.
Main diagonal: A001519 (odd-indexed Fibonacci numbers).
Next diagonal: A001906 (even-indexed Fibonacci numbers).

Examples

			From _Clark Kimberling_, Jun 20 2011: (Start)
Northwest corner begins at (i,j) = (1,1):
  1,   1,   1,   1,   1,   1,   1,   1, ...
  1,   2,   3,   4,   5,   6,   7,   8, ...
  1,   3,   5,   8,  12,  17,  23,  30, ...
  1,   4,   8,  13,  21,  33,  50,  73, ...
  1,   5,  12,  21,  34,  55,  88, 138, ...
  1,   6,  17,  33,  55,  89, 144, 232, ...
  1,   7,  23,  50,  88, 144, 233, 377, ...
(End)
Antidiagonal triangle begins as:
  1;
  1, 1;
  1, 2,  1;
  1, 3,  3,  1;
  1, 4,  5,  4,  1;
  1, 5,  8,  8,  5,  1;
  1, 6, 12, 13, 12,  6,  1;
  1, 7, 17, 21, 21, 17,  7,  1;
  1, 8, 23, 33, 34, 33, 23,  8, 1;
  1, 9, 30, 50, 55, 55, 50, 30, 9, 1;
		

Crossrefs

Main diagonal gives A001519.

Programs

  • Magma
    function t(n,k)
      if k eq 0 or n eq 0 then return 1;
      else return Max(t(n-1,k-1) + t(n-1,k), t(n-1,k-1) + t(n,k-1));
      end if; return t;
    end function;
    T:= func< n,k | t(n-k, k-1) >;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 05 2022
    
  • Maple
    G := x*y*(1-x*y)/((x*y+x-1)*(x*y+y-1)); G := convert(series(G, x=0, 11),polynom):
    for i from 1 to 10 do series(coeff(G,x,i),y=0,11) od; # Mark van Hoeij, Nov 09 2011
    # second Maple program:
    G:= x*y*(1-x*y)/((x*y+x-1)*(x*y+y-1)):
    T:= (i, j)-> coeff(series(coeff(series(G, y, j+1), y, j), x, i+1), x, i):
    seq(seq(T(i, 1+d-i), i=1..d), d=1..12); # Alois P. Heinz, Sep 02 2019
    # third Maple program:
    T:= proc(i,j) option remember; `if`(i=1 or j=1, 1,
          max(T(i-1,j) + T(i-1,j-1), T(i-1,j-1) + T(i,j-1)))
        end:
    seq(seq(T(i, 1+d-i), i=1..d), d=1..12); # Alois P. Heinz, Sep 02 2019
  • Mathematica
    f[i_, 0]:= 1; f[0, i_]:= 1
    f[i_, j_]:= f[i,j]= Max[f[i-1,j] +f[i-1,j-1], f[i-1,j-1] +f[i,j-1]];
    T[i_, j_]:= f[i-j, j-1];
    TableForm[Table[f[i, j], {i,0,7}, {j,0,7}]]
    Table[T[i, j], {i,10}, {j,i}]//Flatten (* modified by G. C. Greubel, Apr 05 2022 *)
  • SageMath
    def t(n,k):
        if (k==0 or n==0): return 1
        else: return max(t(n-1,k-1) + t(n-1,k), t(n-1,k-1) + t(n,k-1))
    def A038792(n,k): return t(n-k, k-1)
    flatten([[A038792(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 05 2022

Formula

G.f.: x*y*(1-x*y)/((x*y+x-1)*(x*y+y-1)). - Mark van Hoeij, Nov 09 2011
From Petros Hadjicostas, Sep 02 2019: (Start)
Following Dil and Mezo (2008), define the incomplete Fibonacci numbers by F(n,k) = Sum_{s = 0..k} binomial(n-1-s, s) for n >= 1 and 0 <= k <= floor((n-1)/2).
Then T(i, j) = F(i+j-1, min(i-1, j-1)) for i,j >= 1.
(End)

Extensions

New description from Benoit Cloitre, Aug 05 2003
Updated from pre-2003 triangular format to present rectangular, from Clark Kimberling, Jun 20 2011

A267788 T(n,k)=Number of nXk 0..1 arrays with every repeated value in every row greater than or equal to, and in every column greater than, the previous repeated value.

Original entry on oeis.org

2, 4, 4, 8, 16, 6, 15, 64, 36, 9, 28, 225, 216, 81, 12, 51, 784, 1056, 729, 144, 16, 92, 2601, 5004, 5081, 1728, 256, 20, 164, 8464, 22110, 34173, 14956, 4096, 400, 25, 290, 26896, 94554, 211555, 122770, 44742, 8000, 625, 30, 509, 84100, 391314, 1262760, 912667
Offset: 1

Views

Author

R. H. Hardin, Jan 20 2016

Keywords

Comments

Table starts
..2....4.....8.....15.......28........51.........92.........164..........290
..4...16....64....225......784......2601.......8464.......26896........84100
..6...36...216...1056.....5004.....22110......94554......391314......1582824
..9...81...729...5081....34173....211555....1262760.....7263481.....40755550
.12..144..1728..14956...122770....912667....6484282....44116906....291598056
.16..256..4096..44742...460598...4245574...37282358...312449872...2540944329
.20..400..8000.102954..1234716..13126812..132388406..1271314080..11831791048
.25..625.15625.238813..3380133..42012357..494152778..5520112546..59723941668
.30..900.27000.472174..7591852.106570618.1413416776.17806098826.217360101006
.36.1296.46656.935890.17155354.272337497.4075463059.57801662876.793861159136

Examples

			Some solutions for n=4 k=4
..1..0..1..0....1..0..0..0....0..1..0..0....1..1..1..0....1..1..0..1
..0..1..0..1....1..1..0..1....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..1..0....0..0..1..1....1..1..1..1....0..1..0..1....1..1..1..1
..1..1..1..1....1..0..0..0....1..0..1..0....1..1..1..1....1..0..0..0
		

Crossrefs

Column 1 is A002620(n+2).
Column 2 is A030179(n+2).
Row 1 is A029907(n+1).
Row 2 is A267729.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4)
k=2: a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +6*a(n-5) -2*a(n-6) -2*a(n-7) +a(n-8)
k=3: [order 12]
k=4: [order 16] for n>18
k=5: [order 20] for n>22
k=6: [order 24] for n>27
Empirical for row n:
n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
n=2: [order 9]
n=3: [order 12]
n=4: [order 93]

A269619 T(n,k)=Number of length-n 0..k arrays with no repeated value differing from the previous repeated value by other than plus two, zero or minus 1.

Original entry on oeis.org

2, 3, 4, 4, 9, 8, 5, 16, 27, 15, 6, 25, 64, 78, 28, 7, 36, 125, 249, 222, 51, 8, 49, 216, 612, 954, 624, 92, 9, 64, 343, 1275, 2956, 3611, 1740, 164, 10, 81, 512, 2370, 7440, 14125, 13544, 4824, 290, 11, 100, 729, 4053, 16218, 43013, 66925, 50442, 13320, 509, 12, 121
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2016

Keywords

Comments

Table starts
...2.....3......4.......5........6.........7.........8..........9.........10
...4.....9.....16......25.......36........49........64.........81........100
...8....27.....64.....125......216.......343.......512........729.......1000
..15....78....249.....612.....1275......2370......4053.......6504.......9927
..28...222....954....2956.....7440.....16218.....31822......57624......97956
..51...624...3611...14125....43013....110099....248143.....507521.....961625
..92..1740..13544...66925...246798....742487...1923796....4447329....9398090
.164..4824..50442..314935..1407232...4979260..14840928...38800210...91490344
.290.13320.186822.1473779..7982022..33232924.113998742..337209090..887591878
.509.36672.688899.6865098.45074673.220896016.872397577.2920747321.8584628259

Examples

			Some solutions for n=6 k=4
..1. .2. .0. .2. .1. .4. .3. .4. .2. .2. .0. .2. .2. .2. .2. .0
..0. .3. .3. .1. .4. .0. .0. .0. .2. .1. .0. .1. .0. .2. .4. .3
..4. .3. .2. .1. .1. .3. .0. .4. .1. .0. .4. .3. .1. .2. .4. .1
..3. .3. .2. .2. .4. .2. .4. .0. .3. .3. .0. .3. .4. .3. .3. .1
..0. .3. .1. .3. .0. .1. .3. .4. .1. .1. .2. .1. .4. .1. .4. .1
..0. .3. .0. .4. .4. .1. .4. .2. .1. .0. .1. .0. .3. .4. .2. .2
		

Crossrefs

Column 1 is A029907(n+1).
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A000578(n+1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
k=2: a(n) = 4*a(n-1) -2*a(n-2) -4*a(n-3)
k=3: a(n) = 12*a(n-1) -51*a(n-2) +81*a(n-3) -3*a(n-4) -63*a(n-5) -24*a(n-6) -9*a(n-7)
k=4: [order 7]
k=5: [order 13]
k=6: [order 15]
k=7: [order 17]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 3*n + 1
n=4: a(n) = n^4 + 4*n^3 + 5*n^2 + 5*n
n=5: a(n) = n^5 + 5*n^4 + 7*n^3 + 12*n^2 + 3*n
n=6: a(n) = n^6 + 6*n^5 + 9*n^4 + 22*n^3 + 9*n^2 + 9*n - 7 for n>2
n=7: a(n) = n^7 + 7*n^6 + 11*n^5 + 35*n^4 + 18*n^3 + 36*n^2 - 19*n - 7 for n>2

A054450 Triangle of partial row sums of unsigned triangle A049310(n,m), n >= m >= 0 (Chebyshev S-polynomials).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 4, 4, 1, 1, 8, 8, 5, 5, 1, 1, 13, 12, 12, 6, 6, 1, 1, 21, 21, 17, 17, 7, 7, 1, 1, 34, 33, 33, 23, 23, 8, 8, 1, 1, 55, 55, 50, 50, 30, 30, 9, 9, 1, 1, 89, 88, 88, 73, 73, 38, 38, 10, 10, 1, 1, 144, 144, 138, 138, 103, 103, 47, 47, 11, 11, 1, 1
Offset: 0

Views

Author

Wolfdieter Lang, Apr 27 2000 and May 08 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is Fib(z)/(1-x*z/(1-z^2)) where Fib(x)=1/(1-x-x^2) = g.f. for A000045(n+1) (Fibonacci numbers without 0).
This is the first member of the family of Riordan-type matrices obtained from the unsigned convolution matrix A049310 by repeated application of the partial row sums procedure.

Examples

			Triangle begins as:
   1;
   1,  1;
   2,  1,  1;
   3,  3,  1,  1;
   5,  4,  4,  1,  1;
   8,  8,  5,  5,  1,  1;
  13, 12, 12,  6,  6,  1,  1;
  21, 21, 17, 17,  7,  7,  1,  1;
  34, 33, 33, 23, 23,  8,  8,  1,  1;
  55, 55, 50, 50, 30, 30,  9,  9,  1, 1;
  89, 88, 88, 73, 73, 38, 38, 10, 10, 1, 1;
  ...
Fourth row polynomial (n=3): p(3,x) = 3 + 3*x + x^2 + x^3.
		

Crossrefs

Programs

Formula

T(n, m) = Sum_{k=m..n} |A049310(n, k)| (sequence of partial row sums in column m).
Column m recursion: T(n, m) = Sum_{j=m..n} T(j-1, m)*|A049310(n-j, 0)| + |A049310(n, m)|, n >= m >= 0, a(n, m) := 0 if n
T(n, 0) = A000045(n+1).
T(n, 1) = A052952(n-1).
T(n, 2) = A054451(n-2).
Sum_{k=0..n} T(n, k) = A029907(n) = A054453(n, 0).
G.f. for column m: Fib(x)*(x/(1-x^2))^m, m >= 0, with Fib(x) = g.f. A000045(n+1).
The corresponding square array has T(n, k) = Sum_{j=0..floor(k/2)} binomial(n+k-j, j). - Paul Barry, Oct 23 2004
From G. C. Greubel, Jul 25 2022: (Start)
T(n, 3) = A099571(n-3).
T(n, 4) = A099572(n-4).
T(n, n) = T(n, n-1) = A000012(n).
T(n, n-2) = A000027(n), n >= 2.
T(n, n-3) = A000027(n), n >= 3.
T(n, n-4) = A152948(n), n >= 4.
T(n, n-5) = A152948(n), n >= 5.
T(n, n-6) = A038793(n), n >= 6.
T(n, n-8) = A038794(n), n >= 8.
T(n, n-10) = A038795(n), n >= 10.
T(n, n-12) = A038796(n), n >= 12. (End)

A269435 T(n,k)=Number of length-n 0..k arrays with no repeated value greater than the previous repeated value.

Original entry on oeis.org

2, 3, 4, 4, 9, 8, 5, 16, 27, 15, 6, 25, 64, 78, 28, 7, 36, 125, 250, 222, 51, 8, 49, 216, 615, 964, 622, 92, 9, 64, 343, 1281, 2995, 3674, 1722, 164, 10, 81, 512, 2380, 7536, 14455, 13868, 4719, 290, 11, 100, 729, 4068, 16408, 44021, 69235, 51917, 12821, 509, 12, 121
Offset: 1

Author

R. H. Hardin, Feb 26 2016

Keywords

Comments

Table starts
...2.....3......4.......5........6.........7.........8..........9.........10
...4.....9.....16......25.......36........49........64.........81........100
...8....27.....64.....125......216.......343.......512........729.......1000
..15....78....250.....615.....1281......2380......4068.......6525.......9955
..28...222....964....2995.....7536.....16408.....32152......58149......98740
..51...622...3674...14455....44021....112476....252932.....516189.....976135
..92..1722..13868...69235...255576....767172...1981512....4566213....9621220
.164..4719..51917..329430..1475871...5209554..15465934...40265487...94574110
.290.12821.192980.1558430..8482276..35236110.120310016..354051015..927338710
.509.34575.712868.7334806.48543777.237479970.933059856.3105016479.9072298237
From Robert Israel, May 30 2019: (Start)
For each of the A000110 partitions pi of the set {1,...,n}, let A_pi(n,k) be the number of length-n 0..k arrays v, such that v(i)=v(j) if and only if i and j are in the same part, and with no repeated value greater than the previous repeated value. There are restrictions on the values in the parts: if two parts a and b each have cardinality >= 2 and a_2 < b_2 (where the parts are indexed in increasing order), then v(b_i) < v(a_i). Thus if there are m partitions with cardinality >= 2, the values on those m parts are decreasing (listing these parts in order of their second entries). So for a partition with j parts of which m have cardinality >= 2, we have A_pi(n,k) = (k+1)*k*...*(k+2-j)/m!, which is a polynomial in k of degree j. The partition of largest cardinality is the partition into singletons, which has m=0. The result is that for each n, T(n,k) is a monic polynomial of degree n. To verify the "empirical" formula for a row, only n terms in that row need to be computed. (End)

Examples

			Some solutions for n=6 k=4
..1. .2. .3. .3. .2. .2. .2. .4. .3. .2. .3. .4. .3. .2. .1. .2
..4. .3. .3. .4. .0. .0. .4. .3. .1. .0. .2. .3. .4. .0. .3. .4
..3. .0. .1. .3. .3. .0. .3. .4. .3. .4. .3. .3. .3. .3. .4. .0
..3. .4. .3. .2. .1. .0. .3. .2. .1. .3. .4. .3. .2. .0. .0. .0
..3. .1. .4. .2. .2. .2. .2. .4. .3. .0. .3. .3. .3. .4. .4. .2
..2. .4. .3. .1. .3. .3. .0. .4. .2. .1. .2. .0. .0. .3. .4. .3
		

Crossrefs

Column 1 is A029907(n+1).
Column 2 is A268013.
Column 3 is A267975.
Diagonal is A268104.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A000578(n+1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
k=2: a(n) = 6*a(n-1) -9*a(n-2) -4*a(n-3) +9*a(n-4) +6*a(n-5) +a(n-6)
k=3: [order 8]
k=4: [order 10]
k=5: [order 12]
k=6: [order 14]
k=7: [order 16]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 3*n + 1
n=4: a(n) = n^4 + 4*n^3 + (11/2)*n^2 + (7/2)*n + 1
n=5: a(n) = n^5 + 5*n^4 + (17/2)*n^3 + 8*n^2 + (9/2)*n + 1
n=6: a(n) = n^6 + 6*n^5 + 12*n^4 + (44/3)*n^3 + (23/2)*n^2 + (29/6)*n + 1
n=7: a(n) = n^7 + 7*n^6 + 16*n^5 + (71/3)*n^4 + (139/6)*n^3 + (43/3)*n^2 + (35/6)*n + 1

A267735 T(n,k)=Number of nXk 0..1 arrays with every repeated value in every row and column greater than or equal to the previous repeated value.

Original entry on oeis.org

2, 4, 4, 8, 16, 8, 15, 64, 64, 15, 28, 225, 512, 225, 28, 51, 784, 3375, 3375, 784, 51, 92, 2601, 21952, 39330, 21952, 2601, 92, 164, 8464, 132651, 451278, 451278, 132651, 8464, 164, 290, 26896, 778688, 4705642, 9116396, 4705642, 778688, 26896, 290, 509
Offset: 1

Author

R. H. Hardin, Jan 20 2016

Keywords

Comments

Table starts
...2......4.........8..........15.............28...............51
...4.....16........64.........225............784.............2601
...8.....64.......512........3375..........21952...........132651
..15....225......3375.......39330.........451278..........4705642
..28....784.....21952......451278........9116396........163879101
..51...2601....132651.....4705642......163879101.......4977655636
..92...8464....778688....47293550.....2818160392.....143643342651
.164..26896...4410944...453985015....45839624169....3885150758271
.290..84100..24389000..4225323881...718310821738..100631663710208
.509.259081.131872229.38217977443.10874476927778.2504347486850059

Examples

			Some solutions for n=4 k=4
..0..1..1..1....1..1..1..0....0..0..1..0....0..1..1..1....0..0..1..1
..1..0..0..0....0..0..1..1....1..0..1..0....0..0..1..1....0..1..0..0
..1..0..0..1....0..1..1..0....0..0..0..0....1..1..1..1....0..1..0..0
..0..0..1..1....1..1..1..0....0..0..1..1....0..0..1..0....1..1..1..0
		

Crossrefs

Column 1 is A029907(n+1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
k=2: [order 9]
k=3: [order 16]
k=4: [order 42]
Showing 1-10 of 31 results. Next