Roberto Tauraso has authored 6 sequences.
A336734
The number of tight 5 X n pavings.
Original entry on oeis.org
0, 1, 57, 1071, 12279, 106738, 781458, 5111986, 30980370, 178047831, 985621119, 5311715977, 28075774881, 146309927344, 754544640000, 3861338821620, 19646614600164, 99532074868285, 502608221035605, 2531829420822835, 12730273358124315, 63919766245452606
Offset: 0
- D. E. Knuth (Proposer), Problem 12005, Amer. Math. Monthly 124 (No. 8, Oct. 2017), page 755. For the solution see op. cit., 126 (No. 7, 2019), 660-664.
- Roberto Tauraso, Problem 12005, Proposed solution.
- Index entries for linear recurrences with constant coefficients, signature (31,-432,3580,-19666,75558,-208736,419600,-613605,644771,-473432,230220,-66528,8640).
A336732
The number of tight 4 X n pavings.
Original entry on oeis.org
0, 1, 26, 282, 2072, 12279, 63858, 305464, 1382648, 6029325, 25628762, 107026662, 441439944, 1804904755, 7334032754, 29669499492, 119647095176, 481400350185, 1933747745850, 7758556171570, 31102292517560, 124605486285231, 498987240470066, 1997573938402512
Offset: 0
- D. E. Knuth (Proposer), Problem 12005, Amer. Math. Monthly 124 (No. 8, Oct. 2017), page 755. For the solution see op. cit., 126 (No. 7, 2019), 660-664.
- Roberto Tauraso, Problem 12005, Proposed solution.
- Index entries for linear recurrences with constant coefficients, signature (18,-139,604,-1627,2818,-3141,2176,-852,144).
-
seq((4^(n+5)+(n-42)*3^(n+4)-9*(2*n-27)*2^(n+5)-36*n^3-486*n^2-2577*n-5398)/36,n=0..20);
-
num=(x+8*x^2-47*x^3+6*x^4+104*x^5); den=((1-x)^4*(1-2*x)^2*(1-3*x)^2*(1-4*x)); CoefficientList[Series[num/den,{x,0,20}],x]
A134988
Number of formal expressions obtained by applying iterated binary brackets to n indexed symbols x_1, ..., x_n such that: 1) each symbol appears exactly once; 2) the smallest index inside a bracket appears on the left hand side and the largest index appears on the right hand side; 3) the outer bracket is the only bracket whose set of indices is a sequence of consecutive integers.
Original entry on oeis.org
1, 0, 1, 4, 22, 144, 1089, 9308, 88562, 927584, 10603178, 131368648, 1753970380, 25112732512, 383925637137, 6243618722124, 107644162715098, 1961478594977856, 37671587406585006, 760654555198989240, 16110333600696417780, 357148428086308848480, 8271374327887650503130
Offset: 2
- Francis Brown and Jonas Bergström, Inversion of series and the cohomology of the moduli spaces m_(0,n)^δ, arXiv:0910.0120 [math.AG], 2009.
- Jesse Elliott, Asymptotic expansions of the prime counting function, arXiv:1809.06633 [math.NT], 2018.
- P. Salvatore and R. Tauraso, The Operad Lie is Free, arXiv:0802.3010 [math.QA], 2008.
-
terms = 23; F[x_] = Sum[n! x^n, {n, 0, terms+1}]; CoefficientList[(x - InverseSeries[Series[x F[x], {x, 0, terms+1}], x])/x^2, x] (* Jean-François Alcover, Feb 17 2019 *)
-
N=66; x='x+O('x^N);
F = sum(n=0,N,x^n*n!);
gf= x - serreverse(x*F); Vec(Ser(gf))
/* Joerg Arndt, Mar 07 2013 */
A123304
Number of edge covers for the circular ladder (n-prism graph) C_n X K_2.
Original entry on oeis.org
4, 5, 43, 263, 1699, 10895, 69943, 448943, 2881699, 18497135, 118730023, 762108143, 4891844659, 31399932335, 201550911703, 1293721577903, 8304182337859, 53303156937455, 342144045482503, 2196165379031663, 14096818096762579, 90485116626705455, 580808823292457143
Offset: 0
-
a[0] = 4; a[1] = 5; a[2] = 43; a[3] = 263; a[n_] := a[n] = 5a[n - 1] + 9a[n - 2] + a[n - 3] - 2a[n - 4]; Table[a[n], {n, 0, 19}] (* Robert G. Wilson v, Sep 26 2006 *)
CoefficientList[ Series[(4 - 15x - 18x^2 - x^3)/((1 + x)*(1 - 6x - 3x^2 + 2x^3)), {x, 0, 19}], x] (* Robert G. Wilson v, Sep 26 2006 *)
Table[(-1)^n + RootSum[2 - 3 # - 6 #^2 + #^3 &, #^n &], {n, 0, 20}] (* Eric W. Weisstein, Mar 29 2017 *)
LinearRecurrence[{5, 9, 1, -2}, {5, 43, 263, 1699}, {0, 20}] (* Eric W. Weisstein, Aug 09 2017 *)
-
x='x+O('x^99); Vec((4-15*x-18*x^2-x^3)/((1+x)*(1-6*x-3*x^2+2*x^3))) \\ Altug Alkan, Aug 10 2017
A115418
Define a k-th-power loop of length m>1 to be a circular permutation of the numbers 1 to m such that the sum of any two consecutive numbers is a perfect k-th-power; these numbers are the lengths of the possible k-th-power loops.
Original entry on oeis.org
2, 32, 473, 9641
Offset: 1
A110128
Number of permutations p of 1,2,...,n satisfying |p(i+2)-p(i)| not equal to 2 for all 0
Original entry on oeis.org
1, 1, 2, 4, 16, 44, 200, 1288, 9512, 78652, 744360, 7867148, 91310696, 1154292796, 15784573160, 232050062524, 3648471927912, 61080818510972, 1084657970877416, 20361216987032284, 402839381030339816, 8377409956454452732
Offset: 0
- Rintaro Matsuo, Table of n, a(n) for n = 0..600 (terms up to a(35) from Vaclav Kotesovec)
- Manuel Kauers, Guessed recurrence operator of order 24 and degree 64
- Vaclav Kotesovec, Mathematica program for this sequence
- George Spahn and Doron Zeilberger, Counting Permutations Where The Difference Between Entries Located r Places Apart Can never be s (For any given positive integers r and s), arXiv:2211.02550 [math.CO], 2022.
- Roberto Tauraso, The Dinner Table Problem: The Rectangular Case, INTEGERS, vol. 6 (2006), paper A11. arXiv:math/0507293.
Edited by
N. J. A. Sloane at the suggestion of Vladeta Jovovic, Jan 01 2008
Comments