cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Roberto Tauraso

Roberto Tauraso's wiki page.

Roberto Tauraso has authored 6 sequences.

A336734 The number of tight 5 X n pavings.

Original entry on oeis.org

0, 1, 57, 1071, 12279, 106738, 781458, 5111986, 30980370, 178047831, 985621119, 5311715977, 28075774881, 146309927344, 754544640000, 3861338821620, 19646614600164, 99532074868285, 502608221035605, 2531829420822835, 12730273358124315, 63919766245452606
Offset: 0

Author

Roberto Tauraso, Aug 02 2020

Keywords

Comments

This is row (or column) m=5 of the array T in A285357.

Crossrefs

Cf. A000295 (m=2), A285357, A285361 (m=3), A336732 (m=4).

Formula

a(n) = (5^(n+7)+(2*n-66)*4^(n+6)+(16*n^2-1432*n+13164)*3^(n+3) +(303*n-1505)*2^(n+10)+576*n^4+13248*n^3+129936*n^2+646972*n+1377903)/576.
G.f.: (x +26*x^2 -264*x^3 +122*x^4 +4367*x^5 -11668*x^6 +3000*x^7 +11168*x^8 +160*x^9) / ((1-x)^5*(1-2*x)^2*(1-3*x)^3*(1-4*x)^2*(1-5*x)).

A336732 The number of tight 4 X n pavings.

Original entry on oeis.org

0, 1, 26, 282, 2072, 12279, 63858, 305464, 1382648, 6029325, 25628762, 107026662, 441439944, 1804904755, 7334032754, 29669499492, 119647095176, 481400350185, 1933747745850, 7758556171570, 31102292517560, 124605486285231, 498987240470066, 1997573938402512
Offset: 0

Author

Roberto Tauraso, Aug 02 2020

Keywords

Comments

This is row (or column) m=4 of the array T in A285357.

Crossrefs

Cf. A000295 (m=2), A285357, A285361 (m=3), A336734 (m=5).

Programs

  • Maple
    seq((4^(n+5)+(n-42)*3^(n+4)-9*(2*n-27)*2^(n+5)-36*n^3-486*n^2-2577*n-5398)/36,n=0..20);
  • Mathematica
    num=(x+8*x^2-47*x^3+6*x^4+104*x^5); den=((1-x)^4*(1-2*x)^2*(1-3*x)^2*(1-4*x)); CoefficientList[Series[num/den,{x,0,20}],x]

Formula

a(n) = (4^(n+5)+(n-42)*3^(n+4)-9*(2*n-27)*2^(n+5)-36*n^3-486*n^2-2577*n-5398)/36.
G.f.: (x+8*x^2-47*x^3+6*x^4+104*x^5)/((1-x)^4*(1-2*x)^2*(1-3*x)^2*(1-4*x)).

A134988 Number of formal expressions obtained by applying iterated binary brackets to n indexed symbols x_1, ..., x_n such that: 1) each symbol appears exactly once; 2) the smallest index inside a bracket appears on the left hand side and the largest index appears on the right hand side; 3) the outer bracket is the only bracket whose set of indices is a sequence of consecutive integers.

Original entry on oeis.org

1, 0, 1, 4, 22, 144, 1089, 9308, 88562, 927584, 10603178, 131368648, 1753970380, 25112732512, 383925637137, 6243618722124, 107644162715098, 1961478594977856, 37671587406585006, 760654555198989240, 16110333600696417780, 357148428086308848480, 8271374327887650503130
Offset: 2

Author

Paolo Salvatore and Roberto Tauraso, Feb 05 2008, Feb 22 2008

Keywords

Comments

a(n) is the number of generators in arity n of the operad Lie, when considered as a free non-symmetric operad.

Crossrefs

Cf. A075834.

Programs

  • Mathematica
    terms = 23; F[x_] = Sum[n! x^n, {n, 0, terms+1}]; CoefficientList[(x - InverseSeries[Series[x F[x], {x, 0, terms+1}], x])/x^2, x] (* Jean-François Alcover, Feb 17 2019 *)
  • PARI
    N=66;  x='x+O('x^N);
    F = sum(n=0,N,x^n*n!);
    gf= x - serreverse(x*F);  Vec(Ser(gf))
    /* Joerg Arndt, Mar 07 2013 */

Formula

a(2) = 1, a(n) = Sum_{k=2..n-2} ((k+1)*a(k+1) + a(k))*a(n-k), n > 2;
G.f.: x - series_reversion(x*F(x)), where F(x) is the g.f. of the factorials (A000142).
a(n) = (1/e)*(1 - 3/n - 5/(2n^2) + O(1/n^3)).

A123304 Number of edge covers for the circular ladder (n-prism graph) C_n X K_2.

Original entry on oeis.org

4, 5, 43, 263, 1699, 10895, 69943, 448943, 2881699, 18497135, 118730023, 762108143, 4891844659, 31399932335, 201550911703, 1293721577903, 8304182337859, 53303156937455, 342144045482503, 2196165379031663, 14096818096762579, 90485116626705455, 580808823292457143
Offset: 0

Author

Roberto Tauraso, Sep 24 2006

Keywords

Comments

An edge covering for a graph is a set of edges so that every vertex is adjacent to at least one edge of this set.
The number of edge coverings for the circle C_n for n>0 is the n-th Lucas number.

Programs

  • Mathematica
    a[0] = 4; a[1] = 5; a[2] = 43; a[3] = 263; a[n_] := a[n] = 5a[n - 1] + 9a[n - 2] + a[n - 3] - 2a[n - 4]; Table[a[n], {n, 0, 19}] (* Robert G. Wilson v, Sep 26 2006 *)
    CoefficientList[ Series[(4 - 15x - 18x^2 - x^3)/((1 + x)*(1 - 6x - 3x^2 + 2x^3)), {x, 0, 19}], x] (* Robert G. Wilson v, Sep 26 2006 *)
    Table[(-1)^n + RootSum[2 - 3 # - 6 #^2 + #^3 &, #^n &], {n, 0, 20}] (* Eric W. Weisstein, Mar 29 2017 *)
    LinearRecurrence[{5, 9, 1, -2}, {5, 43, 263, 1699}, {0, 20}] (* Eric W. Weisstein, Aug 09 2017 *)
  • PARI
    x='x+O('x^99); Vec((4-15*x-18*x^2-x^3)/((1+x)*(1-6*x-3*x^2+2*x^3))) \\ Altug Alkan, Aug 10 2017

Formula

a(n) = 5*a(n-1) +9*a(n-2) +a(n-3) -2*a(n-4).
G.f.: (4-15*x-18*x^2-x^3) / ((1+x)*(1-6*x-3*x^2+2*x^3)).

A115418 Define a k-th-power loop of length m>1 to be a circular permutation of the numbers 1 to m such that the sum of any two consecutive numbers is a perfect k-th-power; these numbers are the lengths of the possible k-th-power loops.

Original entry on oeis.org

2, 32, 473, 9641
Offset: 1

Author

Roberto Tauraso, Jan 22 2006

Keywords

Crossrefs

A110128 Number of permutations p of 1,2,...,n satisfying |p(i+2)-p(i)| not equal to 2 for all 0

Original entry on oeis.org

1, 1, 2, 4, 16, 44, 200, 1288, 9512, 78652, 744360, 7867148, 91310696, 1154292796, 15784573160, 232050062524, 3648471927912, 61080818510972, 1084657970877416, 20361216987032284, 402839381030339816, 8377409956454452732
Offset: 0

Author

Roberto Tauraso, A. Nicolosi and G. Minenkov, Jul 13 2005

Keywords

Comments

When n is even: 1) Number of ways that n persons seated at a rectangular table with n/2 seats along the two opposite sides can be rearranged in such a way that neighbors are no more neighbors after the rearrangement. 2) Number of ways to arrange n kings on an n X n board, with 1 in each row and column, which are non-attacking with respect to the main four quadrants.
a(n) is also number of ways to place n nonattacking pieces rook + alfil on an n X n chessboard (Alfil is a leaper [2,2]) [From Vaclav Kotesovec, Jun 16 2010]
Note that the conjectured recurrence was based on the 600-term b-file, not the other way round. - N. J. A. Sloane, Dec 07 2022

Crossrefs

Column k=2 of A333706.

Formula

A formula is given in the Tauraso reference.
Asymptotic (R. Tauraso 2006, quadratic term V. Kotesovec 2011): a(n)/n! ~ (1 + 4/n + 8/n^2)/e^2.
a(n) ~ exp(-2) * n! * (1 + 4/n + 8/n^2 + 68/(3*n^3) + 242/(3*n^4) + 1692/(5*n^5) + 72802/(45*n^6) + 2725708/(315*n^7) + 16083826/(315*n^8) + 186091480/(567*n^9) + 32213578294/(14175*n^10) + ...), based on the recurrence by Manuel Kauers. - Vaclav Kotesovec, Dec 05 2022

Extensions

Edited by N. J. A. Sloane at the suggestion of Vladeta Jovovic, Jan 01 2008
Terms a(33)-a(35) from Vaclav Kotesovec, Apr 20 2012