cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A144154 A Fibonacci triangle, row sums = A023610.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 5, 3, 4, 5, 8, 5, 6, 6, 5, 13, 8, 10, 9, 10, 8, 21, 13, 16, 15, 15, 16, 13, 34, 21, 26, 24, 25, 24, 26, 21, 55, 34, 42, 39, 40, 40, 39, 42, 34
Offset: 1

Views

Author

Gary W. Adamson, Sep 12 2008

Keywords

Comments

Row sums = A023610: (1, 3, 7, 15, 30, 58,...).

Examples

			First few rows of the triangle =
1;
2, 1;
3, 2, 2;
5, 3, 4, 3;
8, 5, 6, 6, 5;
13, 8, 10, 9, 10, 8;
21, 13, 16, 15, 15, 16, 13;
34, 21, 26, 24, 25, 24, 26, 21;
... Row 4 = (5, 3, 4, 3) = termwise products of (5, 3, 2, 1) and (1, 1, 2, 3).
		

Crossrefs

Formula

The triangle as an infinite lower triangular matrix = A * B. A = a Fibonacci subsequences decrescendo triangle: (1; 2,1; 3,2,1; 5,3,2,1;...) and B = A127647, an infinite lower triangular matrix with the Fibonacci sequence as the main diagonal and the rest zeros.

A055830 Triangle T read by rows: diagonal differences of triangle A037027.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 3, 3, 1, 0, 5, 7, 4, 1, 0, 8, 15, 12, 5, 1, 0, 13, 30, 31, 18, 6, 1, 0, 21, 58, 73, 54, 25, 7, 1, 0, 34, 109, 162, 145, 85, 33, 8, 1, 0, 55, 201, 344, 361, 255, 125, 42, 9, 1, 0, 89, 365, 707, 850, 701, 413, 175, 52, 10, 1, 0, 144, 655, 1416, 1918, 1806, 1239, 630, 236, 63, 11, 1, 0
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Comments

Or, coefficients of a generalized Lucas-Pell polynomial read by rows. - Philippe Deléham, Nov 05 2006
Equals A046854(shifted) * Pascal's triangle; where A046854 is shifted down one row and "1" inserted at (0,0). - Gary W. Adamson, Dec 24 2008

Examples

			Triangle begins:
   1
   1,   0
   2,   1,   0
   3,   3,   1,   0
   5,   7,   4,   1,   0
   8,  15,  12,   5,   1,   0
  13,  30,  31,  18,   6,   1,  0
  21,  58,  73,  54,  25,   7,  1, 0
  34, 109, 162, 145,  85,  33,  8, 1, 0
  55, 201, 344, 361, 255, 125, 42, 9, 1, 0
  ...
		

Crossrefs

Left-hand columns include A000045, A023610.
Row sums: A001333 (numerators of continued fraction convergents to sqrt(2)).
Cf. A122075 (another version).
Cf. A046854. - Gary W. Adamson, Dec 24 2008

Programs

  • Magma
    function T(n,k)
      if k lt 0 or k gt n then return 0;
      elif k eq 0 then return Fibonacci(n+1);
      elif n eq 1 and k eq 1 then return 0;
      else return T(n-1,k-1) + T(n-1,k) + T(n-2,k);
      end if; return T; end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 21 2020
    
  • Maple
    with(combinat);
    T:= proc(n, k) option remember;
          if k<0 or k>n then 0
        elif k=0 then fibonacci(n+1)
        elif n=1 and k=1 then 0
        else T(n-1, k-1) + T(n-1, k) + T(n-2, k)
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Jan 21 2020
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, Fibonacci[n+1], If[n==1 && k==1, 0, T[n-1, k-1] + T[n-1, k] + T[n-2, k]]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    T(n,k) = if(k<0 || k>n, 0, if(k==0, fibonacci(n+1), if(n==1 && k==1, 0, T(n-1, k-1) + T(n-1, k) + T(n-2, k) )));
    for(n=0,12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jan 21 2020
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==0): return fibonacci(n+1)
        elif (n==1 and k==1): return 0
        else: return T(n-1, k-1) + T(n-1, k) + T(n-2, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 21 2020

Formula

G.f.: (1-y*z) / (1-y*(1+y+z)).
T(i, j) = R(i-j, j), where R(0, 0)=1, R(0, j)=0 for j >= 1, R(1, j)=1 for j >= 0, R(i, j) = Sum_{k=0..j} (R(i-2, k) + R(i-1, k)) for i >= 1, j >= 1.
Sum_{k=0..n} x^k*T(n,k) = A039834(n-2), A000012(n), A000045(n+1), A001333(n), A003688(n), A015448(n), A015449(n), A015451(n), A015453(n), A015454(n), A015455(n), A015456(n), A015457(n) for x= -2,-1,0,1,2,3,4,5,6,7,8,9,10. - Philippe Deléham, Oct 22 2006
Sum_{k=0..floor(n/2)} T(n-k,k) = A011782(n). - Philippe Deléham, Oct 22 2006
Triangle T(n,k), 0 <= k <= n, given by [1, 1, -1, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 05 2006
T(n,0) = Fibonacci(n+1) = A000045(n+1). Sum_{k=0..n} T(n,k) = A001333(n). T(n,k)=0 if k > n or if k < 0, T(0,0)=1, T(1,1)=0, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k). - Philippe Deléham, Nov 05 2006

Extensions

Edited by Ralf Stephan, Jan 12 2005

A112310 Number of terms in lazy Fibonacci representation of n.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 3, 2, 3, 3, 3, 4, 3, 3, 4, 3, 4, 4, 4, 5, 3, 4, 4, 4, 5, 4, 4, 5, 4, 5, 5, 5, 6, 4, 4, 5, 4, 5, 5, 5, 6, 4, 5, 5, 5, 6, 5, 5, 6, 5, 6, 6, 6, 7, 4, 5, 5, 5, 6, 5, 5, 6, 5, 6, 6, 6, 7, 5, 5, 6, 5, 6, 6, 6, 7, 5, 6, 6, 6, 7, 6, 6, 7, 6, 7, 7, 7, 8, 5, 5, 6, 5, 6, 6, 6, 7, 5, 6, 6, 6, 7, 6, 6, 7, 6
Offset: 0

Views

Author

N. J. A. Sloane, Dec 01 2005

Keywords

Comments

Equivalently, the number of ones in the maximal Fibonacci bit-representation (A104326) of n.
Conjecture: if we split the sequence in groups that contain Fibonacci(k) terms like (0), (1), (1, 2), (2, 2, 3), (2, 3, 3, 3, 4), (3, 3, 4, 3, 4, 4, 4, 5) etc, the sums in the groups are the terms of A023610. - Gary W. Adamson, Nov 02 2010
Equivalently, the number of periods in the length-n prefix of the infinite Fibonacci word (A003849). An integer p, 1 <= p <= n, is a period of a length-n word x if x[i] = x[i+p] for 1 <= i <= n-p. - Jeffrey Shallit, May 23 2020

Examples

			a(10) = 3 because A104326(10) = 1110 contains three ones.
		

Crossrefs

Number of terms in row n of A112309.
Record positions are in A001911. - Ray Chandler, Dec 01 2005

Programs

  • Haskell
    a112310 n = a112310_list !! n
    a112310_list = concat fss where
       fss = [0] : [1] : (map (map (+ 1))) (zipWith (++) fss $ tail fss)
    -- Reinhard Zumkeller, Oct 26 2013
  • Maple
    A112310 := proc(n)
        convert(A104326(n),base,10) ;
        add(d,d=%) ;
    end proc:
    seq(A112310(n),n=0..120) ; # R. J. Mathar, Aug 28 2025
  • Mathematica
    DeleteCases[IntegerDigits[Range[200], 2], {_, 0, 0, _}]
    A112309 = Map[DeleteCases[Reverse[#] Fibonacci[Range[Length[#]] + 1], 0] &, DeleteCases[IntegerDigits[-1 + Range[200], 2], {_, 0, 0, _}]]
    A112310 = Map[Length, A112309]
    (* Peter J. C. Moses, Mar 03 2015 *)

Formula

a(n) = A007953(A104326(n)). - Amiram Eldar, Oct 10 2023

Extensions

Extended by Ray Chandler, Dec 01 2005
Merged with a sequence from Casey Mongoven, Mar 20 2006, by Franklin T. Adams-Watters, Dec 19 2006

A010049 Second-order Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 3, 5, 10, 18, 33, 59, 105, 185, 324, 564, 977, 1685, 2895, 4957, 8462, 14406, 24465, 41455, 70101, 118321, 199368, 335400, 563425, 945193, 1583643, 2650229, 4430290, 7398330, 12342849, 20573219, 34262337, 57013865, 94800780, 157517532, 261545777
Offset: 0

Views

Author

Keywords

Comments

Number of parts in all compositions of n+1 with no 1's. E.g. a(5)=10 because in the compositions of 6 with no part equal to 1, namely 6,4+2,3+3,2+4,2+2+2, the total number of parts is 10. - Emeric Deutsch, Dec 10 2003

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 83.
  • Cornelius Gerrit Lekkerkerker, Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci, Simon Stevin, Vol. 29 (1952), pp. 190-195.

Crossrefs

Programs

  • GAP
    a:=List([0..40],n->Sum([0..n-1],k->(k+1)*Binomial(n-k-1,k)));; Print(a); # Muniru A Asiru, Dec 31 2018
    
  • Haskell
    a010049 n = a010049_list !! n
    a010049_list = uncurry c $ splitAt 1 a000045_list where
       c us (v:vs) = (sum $ zipWith (*) us (1 : reverse us)) : c (v:us) vs
    -- Reinhard Zumkeller, Nov 01 2013
    
  • Magma
    [((2*n+3)*Fibonacci(n)-n*Fibonacci(n-1))/5: n in [0..40]]; // Vincenzo Librandi, Dec 31 2018
    
  • Maple
    with(combinat): A010049 := proc(n) options remember; if n <= 1 then n else A010049(n-1)+A010049(n-2)+fibonacci(n-2); fi; end;
  • Mathematica
    CoefficientList[Series[(z - z^2)/(z^2 + z - 1)^2, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
    CoefficientList[Series[x (1 - x) / (1 - x - x^2)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{2, 1, -2, -1}, {0, 1, 1, 3}, 38] (* Amiram Eldar, Jan 11 2020 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,-2,1,2]^n*[0;1;1;3])[1,1] \\ Charles R Greathouse IV, Jul 20 2016
    
  • Sage
    def A010049():
        a, b, c, d = 0, 1, 1, 3
        while True:
            yield a
            a, b, c, d = b, c, d, 2*(d-b)+c-a
    a = A010049(); [next(a) for i in range(38)]  # Peter Luschny, Nov 20 2013
    
  • SageMath
    def A010049(n): return (1/5)*(n*lucas_number2(n-1, 1, -1) + 3*fibonacci(n))
    [A010049(n) for n in (0..40)] # G. C. Greubel, Apr 06 2022

Formula

First differences of A001629.
From Wolfdieter Lang, May 03 2000: (Start)
a(n) = ((2*n+3)*F(n) - n*F(n-1))/5, F(n)=A000045(n) (Fibonacci numbers) (Turban reference eq.(2.12)).
G.f.: x*(1-x)/(1-x-x^2)^2. (Turban reference eq.(2.10)). (End)
Recurrence: a(0)=0, a(1)=1, a(2)=1, a(n+2) = a(n+1) + a(n) + F(n). - Benoit Cloitre, Sep 02 2002
Set A(n) = a(n+1) + a(n-1), B(n) = a(n+1) - a(n-1). Then A(n+2) = A(n+1) + A(n) + Lucas(n) and B(n+2) = B(n+1) + B(n) + Fibonacci(n). The polynomials F_2(n,-x) = Sum_{k=0..n} C(n,k)*a(n-k)*(-x)^k appear to satisfy a Riemann hypothesis; their zeros appear to lie on the vertical line Re x = 1/2 in the complex plane. Compare with the polynomials F(n,-x) defined in A094440. For a similar conjecture for polynomials involving the second-order Lucas numbers see A134410. - Peter Bala, Oct 24 2007
a(n) = -A001629(n+2) + 2*A001629(n+1) + A000045(n+1). - R. J. Mathar, Nov 16 2007
Starting (1, 1, 3, 5, 10, ...), = row sums of triangle A135830. - Gary W. Adamson, Nov 30 2007
a(n) = F(n) + Sum_{k=0..n-1} F(k)*F(n-1-k), where F = A000045. - Reinhard Zumkeller, Nov 01 2013
a(n) = Sum_{k=0..n-1} (k+1)*binomial(n-k-1, k). - Peter Luschny, Nov 20 2013
a(n) = Sum_{i=0..n-1} Sum_{j=0..i} F(j-1)*F(i-j-1), where F = A000045. - Carlos A. Rico A., Jul 14 2016
a(n) = Sum_{k = F(n+1)..F(n+2)-1} A007895(k), where F(n) is the n-th Fibonacci number (Lekkerkerker, 1952). - Amiram Eldar, Jan 11 2020
a(n) = (1/5)*(n*A000032(n-1) + 3*A000045(n)). - G. C. Greubel, Apr 06 2022
E.g.f.: 2*exp(x/2)*(5*x*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 04 2023

Extensions

More terms from Emeric Deutsch, Dec 10 2003

A001870 Expansion of (1-x)/(1 - 3*x + x^2)^2.

Original entry on oeis.org

1, 5, 19, 65, 210, 654, 1985, 5911, 17345, 50305, 144516, 411900, 1166209, 3283145, 9197455, 25655489, 71293590, 197452746, 545222465, 1501460635, 4124739581, 11306252545, 30928921224, 84451726200, 230204999425
Offset: 0

Views

Author

Keywords

Comments

a(n) = ((n+1)*F(2*n+3)+(2*n+3)*F(2*(n+1)))/5 with F(n)=A000045(n) (Fibonacci numbers). One half of odd-indexed A001629(n), n >= 2 (Fibonacci convolution).
Convolution of F(2n+1) (A001519) and F(2n+2) (A001906(n+1)). - Graeme McRae, Jun 07 2006
Number of reentrant corners along the lower contours of all directed column-convex polyominoes of area n+3 (a reentrant corner along the lower contour is a vertical step that is followed by a horizontal step). a(n) = Sum_{k=0..ceiling((n+1)/2)} k*A121466(n+3,k). - Emeric Deutsch, Aug 02 2006
From Wolfdieter Lang, Jan 02 2012: (Start)
a(n) = A024458(2*n), n >= 1 (bisection, even arguments).
a(n) is also the odd part of the bisection of the half-convolution of the sequence A000045(n+1), n >= 0, with itself. See a comment on A201204 for the definition of the half-convolution of a sequence with itself. There one also finds the rule for the o.g.f. which in this case is Chato(x)/2 with the o.g.f. Chato(x) = 2*(1-x)/(1-3*x+x^2)^2 of A001629(2*n+3), n >= 0.
(End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A060921(n+1, 1)/2.
Partial sums of A030267. First differences of A001871.
Cf. A121466.
Cf. A023610.

Programs

  • GAP
    F:=Fibonacci;; List([0..30], n-> ((n+1)*F(2*n+3)+(2*n+3)*F(2*(n+1)))/5); # G. C. Greubel, Jul 15 2019
  • Haskell
    a001870 n = a001870_list !! n
    a001870_list = uncurry c $ splitAt 1 $ tail a000045_list where
       c us vs'@(v:vs) = (sum $ zipWith (*) us vs') : c (v:us) vs
    -- Reinhard Zumkeller, Oct 31 2013
    
  • Magma
    I:=[1, 5, 19, 65]; [n le 4 select I[n] else 6*Self(n-1) -11*Self(n-2)+6*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 10 2012
    
  • Maple
    A001870:=-(-1+z)/(z**2-3*z+1)**2; # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    CoefficientList[Series[(1-x)/(1-3*x+x^2)^2,{x,0,40}],x] (* Vincenzo Librandi, Jun 10 2012 *)
    LinearRecurrence[{6,-11,6,-1},{1,5,19,65},30] (* Harvey P. Dale, Aug 17 2013 *)
    With[{F=Fibonacci}, Table[((n+1)*F[2*n+3]+(2*n+3)*F[2*n+2])/5, {n,0,30}]] (* G. C. Greubel, Jul 15 2019 *)
  • PARI
    Vec((1-x)/(1-3*x+x^2)^2+O(x^30)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • Sage
    f=fibonacci; [((n+1)*f(2*n+3)+(2*n+3)*f(2*n+2))/5 for n in (0..30)] # G. C. Greubel, Jul 15 2019
    

Formula

a(n) = Sum_{k=1..n+1} k*binomial(n+k+1, 2k). - Emeric Deutsch, Jun 11 2003
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 10 2012
a(n) = (A238846(n) + A001871(n))/2. - Philippe Deléham, Mar 06 2014
a(n) = ((2*n-1)*Fibonacci(2*n) - n*Fibonacci(2*n-1))/5 [Czabarka et al.]. - N. J. A. Sloane, Sep 18 2018
E.g.f.: exp(3*x/2)*(5*(5 + 11*x)*cosh(sqrt(5)*x/2) + sqrt(5)*(13 + 25*x)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Mar 04 2025

Extensions

More terms from Christian G. Bower

A063967 Triangle read by rows, T(n,k) = T(n-1,k) + T(n-2,k) + T(n-1,k-1) + T(n-2,k-1) and T(0,0) = 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 7, 5, 1, 5, 15, 16, 7, 1, 8, 30, 43, 29, 9, 1, 13, 58, 104, 95, 46, 11, 1, 21, 109, 235, 271, 179, 67, 13, 1, 34, 201, 506, 705, 591, 303, 92, 15, 1, 55, 365, 1051, 1717, 1746, 1140, 475, 121, 17, 1, 89, 655, 2123, 3979, 4759, 3780, 2010, 703, 154, 19, 1
Offset: 0

Views

Author

Henry Bottomley, Sep 05 2001

Keywords

Examples

			T(3,1) = T(2,1) + T(1,1) + T(2,0) + T(1,0) = 3 + 1 + 2 + 1 = 7.
Triangle begins:
   1,
   1,   1,
   2,   3,   1,
   3,   7,   5,   1,
   5,  15,  16,   7,   1,
   8,  30,  43,  29,   9,   1,
  13,  58, 104,  95,  46,  11,  1,
  21, 109, 235, 271, 179,  67, 13,  1,
  34, 201, 506, 705, 591, 303, 92, 15, 1
		

Crossrefs

Row sums are A002605.
Columns include: A000045(n+1), A023610(n-1).
Main diagonal: A000012, a(n, n-1) = A005408(n-1).
Matrix inverse: A091698, matrix square: A091700.
Cf. A321620.
Sum_{k=0..n} x^k*T(n,k) is (-1)^n*A057086(n) (x=-11), (-1)^n*A057085(n+1) (x=-10), (-1)^n*A057084(n) (x=-9), (-1)^n*A030240(n) (x=-8), (-1)^n*A030192(n) (x=-7), (-1)^n*A030191(n) (x=-6), (-1)^n*A001787(n+1) (x=-5), A000748(n) (x=-4), A108520(n) (x=-3), A049347(n) (x=-2), A000007(n) (x=-1), A000045(n) (x=0), A002605(n) (x=1), A030195(n+1) (x=2), A057087(n) (x=3), A057088(n) (x=4), A057089(n) (x=5), A057090(n) (x=6), A057091(n) (x=7), A057092(n) (x=8), A057093(n) (x=9). - Philippe Deléham, Nov 03 2006

Programs

  • Haskell
    a063967_tabl = [1] : [1,1] : f [1] [1,1] where
       f us vs = ws : f vs ws where
         ws = zipWith (+) ([0] ++ us ++ [0]) $
              zipWith (+) (us ++ [0,0]) $ zipWith (+) ([0] ++ vs) (vs ++ [0])
    -- Reinhard Zumkeller, Apr 17 2013
  • Mathematica
    T[n_, k_] := Sum[Binomial[j, n - j]*Binomial[j, k], {j, 0, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 11 2017, after Paul Barry *)
    (* Function RiordanSquare defined in A321620. *)
    RiordanSquare[1/(1 - x - x^2), 11] // Flatten (* Peter Luschny, Nov 27 2018 *)

Formula

G.f.: 1/(1-x*(1+x)*(1+y)). - Vladeta Jovovic, Oct 11 2003
Riordan array (1/(1-x-x^2), x(1+x)/(1-x-x^2)). The inverse of the signed version (1/(1+x-x^2),x(1-x)/(1+x-x^2)) is abs(A091698). - Paul Barry, Jun 10 2005
T(n, k) = Sum_{j=0..n} C(j, n-j)C(j, k). - Paul Barry, Nov 09 2005
Diagonal sums are A002478. - Paul Barry, Nov 09 2005
A026729*A007318 as infinite lower triangular matrices. - Philippe Deléham, Dec 11 2008
Central coefficients T(2*n,n) are A137644. - Paul Barry, Apr 15 2010
Product of Riordan arrays (1, x(1+x))*(1/(1-x), x/(1-x)), that is, A026729*A007318. - Paul Barry, Mar 14 2011
Triangle T(n,k), read by rows, given by (1,1,-1,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 12 2011

A074082 Coefficient of q^2 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,1).

Original entry on oeis.org

0, 0, 0, 0, 2, 6, 16, 37, 81, 169, 342, 675, 1307, 2491, 4686, 8718, 16066, 29364, 53282, 96065, 172215, 307151, 545286, 963993, 1697701, 2979383, 5211852, 9090060, 15810530, 27429426, 47473828, 81983773, 141286221, 243011173
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002

Keywords

Comments

The coefficient of q^0 in nu(n) is the Fibonacci number F(n+1). The coefficient of q^1 is A023610(n-3).

Examples

			The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=2, nu(3)=3+q, nu(4)=5+3q+2q^2, nu(5)=8+7q+6q^2+4q^3+q^4, so the coefficients of q^2 are 0,0,0,0,2,6.
		

Crossrefs

Coefficients of q^0, q^1 and q^3 are in A000045, A023610 and A074083. Related sequences with different values of b and lambda are in A074084-A074089.

Programs

  • Mathematica
    b=1; lambda=1; expon=2; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]
    (* Second program: *)
    Join[{0, 0}, LinearRecurrence[{3, 0, -5, 0, 3, 1}, {0, 0, 2, 6, 16, 37}, 32]] (* Jean-François Alcover, Sep 23 2017 *)

Formula

G.f.: (2*x^4-2*x^6-x^7)/(1-x-x^2)^3.
a(n) = 3*a(n-1)-5*a(n-3)+3*a(n-5)+a(n-6) for n>=8.

Extensions

Edited by Dean Hickerson, Aug 21 2002

A030267 Compose the natural numbers with themselves, A(x) = B(B(x)) where B(x) = x/(1-x)^2 is the generating function for natural numbers.

Original entry on oeis.org

1, 4, 14, 46, 145, 444, 1331, 3926, 11434, 32960, 94211, 267384, 754309, 2116936, 5914310, 16458034, 45638101, 126159156, 347769719, 956238170, 2623278946, 7181512964, 19622668679, 53522804976, 145753273225, 396323283724, 1076167858046, 2918447861686
Offset: 1

Views

Author

Keywords

Comments

Sum of pyramid weights of all nondecreasing Dyck paths of semilength n. (A pyramid in a Dyck word (path) is a factor of the form U^h D^h, where U=(1,1), D=(1,-1) and h is the height of the pyramid. A pyramid in a Dyck word w is maximal if, as a factor in w, it is not immediately preceded by a u and immediately followed by a d. The pyramid weight of a Dyck path (word) is the sum of the heights of its maximal pyramids.) Example: a(4) = 46. Indeed, there are 14 Dyck paths of semilength 4. One of them, namely UUDUDDUD is not nondecreasing because the valleys are at heights 1 and 0. The other 13, with the maximal pyramids shown between parentheses, are: (UD)(UD)(UD)(UD), (UD)(UD)(UUDD), (UD)(UUDD)(UD), (UD)U(UD)(UD)D, (UD)(UUUDDD), (UUDD)(UD)(UD), (UUDD)(UUDD), (UUUDDD)(UD), U(UD)(UD)(UD)D, U(UD)(UUDD)D, U(UUDD)(UD)D, UU(UD)(UD)DD and (UUUUDDDD). The pyramid weights of these paths are 4, 4, 4, 3, 4, 4, 4, 4, 3, 3, 3, 2, and 4, respectively. Their sum is 46. a(n) = Sum_{k = 1..n} k*A121462(n, k). - Emeric Deutsch, Jul 31 2006
Number of 1s in all compositions of n, where compositions are understood with two different kinds of 1s, say 1 and 1' (n >= 1). Example: a(2) = 4 because the compositions of 2 are 11, 11', 1'1, 1'1', 2, having a total of 2 + 1 + 1 + 0 + 0 = 4 1s. Also number of k's in all compositions of n + k (k = 2, 3, ...). - Emeric Deutsch, Jul 21 2008
From Petros Hadjicostas, Jun 24 2019: (Start)
If c = (c(m): m >= 1) is the input sequence and b_k = (b_k(n): n >= 1) is the output sequence under the AIK[k] = INVERT[k] transform (see Bower's web link below), then the bivariate g.f. of the list of sequences (b_k: k >= 1) = ((b_k(n): n >= 1): k >= 1) is Sum_{n, k >= 1} b_k(n)*x^n*y^k = y*C(x)/(1 - y*C(x)), where C(x) = Sum_{m >= 1} c(m)*x^m is the g.f. of the input sequence.
Here, b_k(n) is the number of all (linear) compositions of n with k parts where a part of size m is colored with one of c(m) colors. Thus, Sum_{k = 1..n} k*b_k(n) is the total number of parts in all compositions of n.
If we differentiate the bivariate g.f. function above, i.e., Sum_{n, k >= 1} b_k(n)*x^n*y^k, with respect to y and set y = 1, we get the g.f. of the sequence (Sum_{k = 1..n} k*b_k(n): n >= 1). It is C(x)/(1 - C(x))^2.
When c(m) = m for all m >= 1, we have m-color compositions of n that were first studied by Agarwal (2000). The cyclic version of these m-color compositions were studied by Gibson (2017) and Gibson et al. (2018).
When c(m) = m for each m >= 1, we have C(x) = x/(1 - x)^2, and so C(x)/(1 - C(x))^2 = x * (1 - x)^2/(1 - 3*x + x^2)^2, which is the g.f. of the current sequence.
Hence, a(n) is the total number of parts in all m-color compositions of n (in the sense of Agarwal (2000)).
(End)
Series reversal gives A153294 starting from index 1, with alternating signs: 1, -4, 18, -86, 427, -2180, ... - Vladimir Reshetnikov, Aug 03 2019

Examples

			From _Petros Hadjicostas_, Jun 24 2019: (Start)
Recall that with m-color compositions, a part of size m may be colored with one of m colors.
We have a(1) = 1 because we only have one colored composition, namely 1_1, that has only 1 part.
We have a(2) = 4 because we have the following colored compositions of n = 2: 2_1, 2_2, 1_1 + 1_1; hence, a(2) = 1 + 1 + 2 = 4.
We have a(3) = 14 because we have the following colored compositions of n = 3: 3_1, 3_2, 3_3, 1_1 + 2_1, 1_1 + 2_2, 2_1 + 1_1, 2_2 + 1_1, 1_1 + 1_1 + 1_1; hence, a(3) = 1 + 1 + 1 + 2 + 2 + 2 + 2 + 3 = 14.
We have a(14) = 46 because we have the following colored compositions of n = 4:
(i) 4_1, 4_2, 4_3, 4_4; with a total of 4 parts.
(ii) 1_1 + 3_1, 1_1 + 3_2, 1_1 + 3_3, 3_1 + 1_1, 3_2 + 1_1, 3_3 + 1_1, 2_1 + 2_1, 2_1 + 2_2, 2_2 + 2_1, 2_2 + 2_2; with a total of 2 x 10 = 20 parts.
(iii) 1_1 + 1_1 + 2_1, 1_1 + 1_1 + 2_2, 1_1 + 2_1 + 1_1, 1_1 + 2_2 + 1_1, 2_1 + 1_1 + 1_1, 2_2 + 1_1 + 1_1; with a total of 3 x 6 = 18 parts.
(iv) 1_1 + 1_1 + 1_1 + 1_1; with a total of 4 parts.
Hence, a(4) = 4 + 20 + 18 + 4 = 46.
(End)
		

References

  • R. P. Grimaldi, Compositions and the alternate Fibonacci numbers, Congressus Numerantium, 186, 2007, 81-96.

Crossrefs

Partial sums of A038731. First differences of A001870.
Cf. A001629 (right-shifted inverse Binomial Transform), A023610 (inverse Binomial Transform of left-shifted sequence), A030279, A045623, A088305, A121462, A153294, A279282, A307415, A308723.

Programs

  • Maple
    with(combinat): L[0]:=2: L[1]:=1: for n from 2 to 60 do L[n]:=L[n-1] +L[n-2] end do: seq(2*fibonacci(2*n)*1/5+(1/5)*n*L[2*n],n=1..30); # Emeric Deutsch, Jul 21 2008
  • Mathematica
    Table[Sum[k Binomial[n+k-1,2k-1],{k,n}],{n,30}] (* or *) LinearRecurrence[ {6,-11,6,-1},{1,4,14,46},30] (* Harvey P. Dale, Aug 01 2011 *)
  • PARI
    a(n)=(2*n*fibonacci(2*n+1)+(2-n)*fibonacci(2*n))/5

Formula

a(n) = -a(-n) = (2n * F(2n+1) + (2 - n) * F(2n))/5 with F(n) = A000045(n) (Fibonacci numbers).
G.f.: x * (1 - x)^2/(1 - 3*x + x^2)^2.
a(n) = Sum_{k = 1..n} k*C(n + k - 1, 2*k - 1).
a(n) = (2/5)*F(2*n) + (1/5)*n*L(2*n), where F(k) are the Fibonacci numbers (F(0)=0, F(1)=1) and L(k) are the Lucas numbers (L(0) = 2, L(1) = 1). - Emeric Deutsch, Jul 21 2008
a(0) = 1, a(1) = 4, a(2) = 14, a(3) = 46, a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). - Harvey P. Dale, Aug 01 2011
a(n) = ((3 - sqrt(5))^n*(5*n - 2*sqrt(5)) + (3 + sqrt(5))^n*(5*n + 2*sqrt(5)))/ (25*2^n). - Peter Luschny, Mar 07 2022
E.g.f.: exp(3*x/2)*(15*x*cosh(sqrt(5)*x/2) + sqrt(5)*(4 + 5*x)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Mar 04 2025

Extensions

Name clarified using a comment of the author by Peter Luschny, Aug 03 2019

A002940 Arrays of dumbbells.

Original entry on oeis.org

1, 4, 11, 26, 56, 114, 223, 424, 789, 1444, 2608, 4660, 8253, 14508, 25343, 44030, 76136, 131110, 224955, 384720, 656041, 1115784, 1893216, 3205416, 5416441, 9136084, 15384563, 25866914, 43429784, 72821274, 121953943, 204002680, 340886973, 569047468, 949022608
Offset: 1

Views

Author

Keywords

Comments

Whitney transform of n. The Whitney transform maps the sequence with g.f. g(x) to that with g.f. (1/(1-x))g(x(1+x)). - Paul Barry, Feb 16 2005
a(n-1) is the permanent of the n X n 0-1 matrix with 1 in (i,j) position iff (i=1 and j1). For example, with n=5, a(4) = per([[1, 1, 1, 1, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [0, 1, 1, 1, 1], [0, 0, 1, 1, 1]]) = 26. - David Callan, Jun 07 2006
a(n) is the internal path length of the Fibonacci tree of order n+2. A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node. The internal path length of a tree is the sum of the levels of all of its internal (i.e. non-leaf) nodes. - Emeric Deutsch, Jun 15 2010
Partial Sums of A023610 - John Molokach, Jul 03 2013

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.

Crossrefs

Programs

  • Haskell
    a002940 n = a002940_list !! (n-1)
    a002940_list = 1 : 4 : 11 : zipWith (+)
       (zipWith (-) (map (* 2) $ drop 2 a002940_list) a002940_list)
       (drop 5 a000045_list)
    -- Reinhard Zumkeller, Jan 18 2014
    
  • Magma
    m:=35; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)/((1-x)*(1-x-x^2)^2) )); // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    a[n_]:= a[n]= If[n<3, n^2, 2a[n-1] -a[n-3] +Fibonacci[n+1]]; Array[a, 32] (* Jean-François Alcover, Jul 31 2018 *)
  • PARI
    my(x='x+O('x^35)); Vec((1+x)/((1-x)*(1-x-x^2)^2)) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    ((1+x)/((1-x)*(1-x-x^2)^2)).series(x, 35).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019

Formula

a(n) = 2*a(n-1) - a(n-3) + A000045(n+1).
G.f.: x*(1+x)/((1-x)*(1-x-x^2)^2).
a(n) = Sum_{k=0..n} ( Sum_{i=0..n} k*C(k, i-k) ). - Paul Barry, Feb 16 2005
E.g.f.: 2*exp(x) + exp(x/2)*((55*x - 50)*cosh(sqrt(5)*x/2) + sqrt(5)*(25*x - 22)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 03 2023

Extensions

More terms from Henry Bottomley, Jun 02 2000

A067330 Triangle read by rows of incomplete convolutions of Fibonacci numbers F(n+1) = A000045(n+1), n>=0.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 3, 5, 7, 10, 5, 8, 12, 15, 20, 8, 13, 19, 25, 30, 38, 13, 21, 31, 40, 50, 58, 71, 21, 34, 50, 65, 80, 96, 109, 130, 34, 55, 81, 105, 130, 154, 180, 201, 235, 55, 89, 131, 170, 210, 250, 289, 331, 365, 420, 89, 144, 212, 275, 340, 404, 469, 532, 600, 655, 744, 144, 233, 343, 445
Offset: 0

Views

Author

Wolfdieter Lang, Feb 15 2002

Keywords

Comments

The diagonals d>=0 (d=0: main diagonal) give convolutions of Fibonacci numbers F(n+1), n>=0, with those with d-shifted index: a(d+n,d)=sum(F(k+1)*F(d+n+1-k),k=0..n), n>=0.
The row polynomials p(n,x) := sum(a(n,m)*x^m,m=0..n) are generated by A(x*z)*(A(z)-x*A(x*z))/(1-x), with A(x) := 1/(1-x-x^2) (g.f. Fibonacci F(n+1), n>=0).
The diagonals give A001629(n+2), A023610, A067331-4, A067430-1, A067977-8 for d= n-m= 0..9, respectively.
A row with n terms = the dot product of vectors with n terms: (1,1,2,3,...)dot(...3,2,1,1) with carryovers; such that (3, 5, 7, 10) = (1*3=3), (1*2+3=5), (2*1+5=7), (3*1+7=10).

Examples

			{1}; {1,2}; {2,3,5}; {3,5,7,10}; ...; p(2,n)= 2+3*x+5*x^2.
		

Crossrefs

Cf. A067418 (triangle with rows read backwards).

Programs

  • Mathematica
    Table[Sum[Fibonacci[k + 1] Fibonacci[n - k + 1], {k, 0, m}], {n, 0, 11}, {m, 0, n}] // Flatten (* Michael De Vlieger, Apr 11 2016 *)

Formula

a(n, m)= sum(F(k+1)*F(n-k+1), k=0..m), n>=m>=0, else 0.
a(n, m)= (((3*m+5)*F(m+1)+(m+1)*F(m))*F(n-m+1)+(m*F(m+1)+2*(m+1)*F(m))*F(n-m))/5.
G.f. for diagonals d=n-m>=0: (x^d)*(F(d+1)+F(d)*x)/(1-x-x^2)^2, with F(n) := A000045(n) (Fibonacci).
a(n, m) = ((-1)^m*F(n-2*m-1)+m*L(n+2)+5*F(n)+4*F(n-1))/5, with F(-n) = (-1)^(n+1)*F(n), hence a(n, m) = (2*(m+1)*L(n+2)-A067979(n, m))/5, n>=m>=0. - Ehren Metcalfe, Apr 11 2016
Showing 1-10 of 27 results. Next