cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A001870 Expansion of (1-x)/(1 - 3*x + x^2)^2.

Original entry on oeis.org

1, 5, 19, 65, 210, 654, 1985, 5911, 17345, 50305, 144516, 411900, 1166209, 3283145, 9197455, 25655489, 71293590, 197452746, 545222465, 1501460635, 4124739581, 11306252545, 30928921224, 84451726200, 230204999425
Offset: 0

Views

Author

Keywords

Comments

a(n) = ((n+1)*F(2*n+3)+(2*n+3)*F(2*(n+1)))/5 with F(n)=A000045(n) (Fibonacci numbers). One half of odd-indexed A001629(n), n >= 2 (Fibonacci convolution).
Convolution of F(2n+1) (A001519) and F(2n+2) (A001906(n+1)). - Graeme McRae, Jun 07 2006
Number of reentrant corners along the lower contours of all directed column-convex polyominoes of area n+3 (a reentrant corner along the lower contour is a vertical step that is followed by a horizontal step). a(n) = Sum_{k=0..ceiling((n+1)/2)} k*A121466(n+3,k). - Emeric Deutsch, Aug 02 2006
From Wolfdieter Lang, Jan 02 2012: (Start)
a(n) = A024458(2*n), n >= 1 (bisection, even arguments).
a(n) is also the odd part of the bisection of the half-convolution of the sequence A000045(n+1), n >= 0, with itself. See a comment on A201204 for the definition of the half-convolution of a sequence with itself. There one also finds the rule for the o.g.f. which in this case is Chato(x)/2 with the o.g.f. Chato(x) = 2*(1-x)/(1-3*x+x^2)^2 of A001629(2*n+3), n >= 0.
(End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A060921(n+1, 1)/2.
Partial sums of A030267. First differences of A001871.
Cf. A121466.
Cf. A023610.

Programs

  • GAP
    F:=Fibonacci;; List([0..30], n-> ((n+1)*F(2*n+3)+(2*n+3)*F(2*(n+1)))/5); # G. C. Greubel, Jul 15 2019
  • Haskell
    a001870 n = a001870_list !! n
    a001870_list = uncurry c $ splitAt 1 $ tail a000045_list where
       c us vs'@(v:vs) = (sum $ zipWith (*) us vs') : c (v:us) vs
    -- Reinhard Zumkeller, Oct 31 2013
    
  • Magma
    I:=[1, 5, 19, 65]; [n le 4 select I[n] else 6*Self(n-1) -11*Self(n-2)+6*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 10 2012
    
  • Maple
    A001870:=-(-1+z)/(z**2-3*z+1)**2; # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    CoefficientList[Series[(1-x)/(1-3*x+x^2)^2,{x,0,40}],x] (* Vincenzo Librandi, Jun 10 2012 *)
    LinearRecurrence[{6,-11,6,-1},{1,5,19,65},30] (* Harvey P. Dale, Aug 17 2013 *)
    With[{F=Fibonacci}, Table[((n+1)*F[2*n+3]+(2*n+3)*F[2*n+2])/5, {n,0,30}]] (* G. C. Greubel, Jul 15 2019 *)
  • PARI
    Vec((1-x)/(1-3*x+x^2)^2+O(x^30)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • Sage
    f=fibonacci; [((n+1)*f(2*n+3)+(2*n+3)*f(2*n+2))/5 for n in (0..30)] # G. C. Greubel, Jul 15 2019
    

Formula

a(n) = Sum_{k=1..n+1} k*binomial(n+k+1, 2k). - Emeric Deutsch, Jun 11 2003
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 10 2012
a(n) = (A238846(n) + A001871(n))/2. - Philippe Deléham, Mar 06 2014
a(n) = ((2*n-1)*Fibonacci(2*n) - n*Fibonacci(2*n-1))/5 [Czabarka et al.]. - N. J. A. Sloane, Sep 18 2018
E.g.f.: exp(3*x/2)*(5*(5 + 11*x)*cosh(sqrt(5)*x/2) + sqrt(5)*(13 + 25*x)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Mar 04 2025

Extensions

More terms from Christian G. Bower

A038731 Number of columns in all directed column-convex polyominoes of area n+1.

Original entry on oeis.org

1, 3, 10, 32, 99, 299, 887, 2595, 7508, 21526, 61251, 173173, 486925, 1362627, 3797374, 10543724, 29180067, 80521055, 221610563, 608468451, 1667040776, 4558234018, 12441155715, 33900136297, 92230468249, 250570010499, 679844574322, 1842280003640
Offset: 0

Views

Author

Clark Kimberling, May 02 2000

Keywords

Comments

Apply Riordan array (1/(1-x), x/(1-x)^2) to n+1. - Paul Barry, Oct 13 2009
Binomial transform of (A001629 shifted left twice). - R. J. Mathar, Feb 06 2010

Crossrefs

Row-sums of array T as in A038730.
First differences of A030267.
Row sums of A318942(n+1).
Cf. A000045.

Programs

  • Haskell
    a038731 n = a038731_list !! n
    a038731_list = c [1] $ tail a000045_list where
       c us vs'@(v:vs) = (sum $ zipWith (*) us vs') : c (v:us) vs
    -- Reinhard Zumkeller, Oct 31 2013
  • Magma
    I:=[1, 3, 10, 32]; [n le 4 select I[n] else 6*Self(n-1)-11*Self(n-2)+6*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Feb 04 2012
    
  • Mathematica
    Table[Sum[Binomial[n, k]*CoefficientList[Series[1/(1 - x - x^2)^2, {x, 0, k}], x][[-1]], {k, 0, n}], {n, 0, 27}] (* Arkadiusz Wesolowski, Feb 03 2012 *)
    LinearRecurrence[{6, -11, 6, -1}, {1, 3, 10, 32}, 30] (* Vincenzo Librandi, Feb 04 2012 *)

Formula

5*a(n) = (2n+1)*F(2n+2) - (n-4)*F(2n+1), where the F(n)'s are the Fibonacci numbers, F(0)=0, F(1)=1.
a(n) = Sum_{k=1..n+1} k*binomial(n+k-1, 2k-2). - Emeric Deutsch, Jun 11 2003
From Paul Barry, Oct 13 2009: (Start)
G.f.: (1-x)^3/(1-3x+x^2)^2.
a(n) = Sum_{k=0..n} binomial(n+k, 2k)*(k+1). (End)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). - R. J. Mathar, Feb 06 2010
a(n) = Sum_{k=0..n} (F(2k)+0^k)*F(2n-2k+1). - Paul Barry, Jun 23 2010
E.g.f.: exp(3*x/2)*(5*(5 + 4*x)*cosh(sqrt(5)*x/2) + sqrt(5)*(7 + 10*x)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Mar 04 2025

Extensions

Entry improved by comments from Emeric Deutsch, Jun 14 2001

A153294 G.f.: A(x) = F(x*F(x)^2) = F(F(x)-1) where F(x) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan).

Original entry on oeis.org

1, 1, 4, 18, 86, 427, 2180, 11373, 60380, 325259, 1773842, 9776637, 54380144, 304905223, 1721650832, 9782051362, 55888463214, 320898932595, 1850762866662, 10717217871255, 62287285235230, 363212668363520, 2124430957852380
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2009

Keywords

Comments

Ignoring a(0), the series reversal gives A030267 with alternating signs: 1, -4, 14, -46, 145, -444, ... - Vladimir Reshetnikov, Aug 03 2019

Examples

			G.f.: A(x) = F(x*F(x)^2) = 1 + x + 4*x^2 + 18*x^3 + 86*x^4 +... where
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
A(x)^2 = 1 + 2*x + 9*x^2 + 44*x^3 + 224*x^4 + 1170*x^5 + 6226*x^6 +...
F(x)^2*A(x)^2 = 1 + 4*x + 18*x^2 + 86*x^3 + 427*x^4 + 2180*x^5 +...
From _Peter Bala_, Jul 21 2015: (Start)
Let B(x) = (A(x) - 1)/x = Sum_{n >= 0} a(n+1)*x^n. Then 1 + x*B'(x)/B (x)  = 1 + 4*x + 20*x^2 + 106*x^3 + ... is the o.g.f. for A243585.
x*sqrt(B(x)) = x + 2*x^2 + 7*x^3 + 29*x^4 + ... is the o.g.f for A007582. (End)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := 2^(n-1) (2n-1)!! ((Hypergeometric2F1[-1/2, -n-1, n, -4] - 1)/(n+1)! + 2 Hypergeometric2F1[1/2, -n, n+1, -4]/(n n!)); Table[a[n], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 07 2015 *)
    Flatten[{1, Table[Sum[Binomial[2*k + 1, k]/(2*k + 1)*Binomial[2*(n-k) + 2*k, n-k]*2*k/(2*(n-k) + 2*k), {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Nov 07 2015 *)
    A153294[0] := 1; A153294[n_] := (A243585[n] - A007856[n+1])/n;
    Table[A153294[n], {n, 0, 22}] (* Peter Luschny, Aug 04 2019 *)
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+1,k)/(2*k+1)*binomial(2*(n-k)+2*k,n-k)*2*k/(2*(n-k)+2*k)))}

Formula

a(n) = Sum_{k=0..n} C(2k+1,k)/(2k+1) * C(2n,n-k)*k/n for n>0 with a(0)=1.
G.f.: A(x) = [1 - sqrt(5 - 4*F(x))]/(2*F(x)-2) where F(x) = (1-sqrt(1-4x))/(2x).
G.f. satisfies: A(x) = 1 + x*F(x)^2*A(x)^2 where F(x) is the g.f. of A000108.
G.f. satisfies: A(x*G(x)) = F(x*G(x)^3) = F(G(x)-1) where G(x) = F(x*G(x)) is the g.f. of A001764 and F(x) is the g.f. of A000108.
For n > 0, a(n) = 2^(n-1)*(2*n-1)!!*((hypergeom([-1/2,-n-1], [n], -4) - 1)/(n+1)! + 2*hypergeom([1/2,-n], [n+1], -4)/(n*n!)). - Vladimir Reshetnikov, Nov 07 2015
a(n) ~ 5^(2*n + 1/2) / (sqrt(3*Pi) * n^(3/2) * 4^n). - Vaclav Kotesovec, Nov 07 2015
a(n) = (A243585(n) - A007856(n+1)) / n for n >= 1. - Peter Luschny, Aug 04 2019

A030279 COMPOSE squares with squares.

Original entry on oeis.org

1, 8, 50, 276, 1397, 6672, 30565, 135668, 587426, 2493056, 10407393, 42848800, 174348417, 702245128, 2803634370, 11106624804, 43697519013, 170871040752, 664492915061, 2571316718500, 9905232077842, 38000679280352, 145240335213857, 553203971301184, 2100403987129441, 7951405959127848
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[((1-x)^3(1+x)(1-2x+4x^2-x^3))/((1-4x+2x^2-x^3)^3),{x,0,30}],x] (* or *) LinearRecurrence[{12,-54,115,-132,108,-59,24,-6,1},{1,8,50,276,1397,6672,30565,135668,587426},30] (* Harvey P. Dale, Mar 14 2016 *)
  • PARI
    Vec(((1-x)^3*(1+x)*(1-2*x+4*x^2-x^3))/((1-4*x+2*x^2-x^3)^3)+O(x^66)) \\ Joerg Arndt, Apr 21 2013

Formula

G.f.: ((1-x)^3*(1+x)*(1-2*x+4*x^2-x^3))/((1-4*x+2*x^2-x^3)^3).
a(n) = 12*a(n-1)-54*a(n-2)+115*a(n-3)-132*a(n-4)+108*a(n-5)-59*a(n-6)+24*a(n-7)-6*a(n-8)+a(n-9). - Wesley Ivan Hurt, Apr 23 2021

A038738 Path-counting array T(i,j) obtained from array t in A038792 by T(i,j)=t(2i+1,j).

Original entry on oeis.org

1, 1, 3, 1, 5, 8, 1, 7, 17, 21, 1, 9, 30, 50, 55, 1, 11, 47, 103, 138, 144, 1, 13, 68, 188, 314, 370, 377, 1, 15, 93, 313, 643, 895, 979, 987, 1, 17, 122, 486, 1201, 1993, 2455, 2575, 2584, 1, 19, 155, 715, 2080, 4082, 5798, 6590, 6755
Offset: 1

Views

Author

Clark Kimberling, May 02 2000

Keywords

Comments

T(n,n)=A001906(n) for n >= 0 (even-indexed Fibonacci numbers).
Row sums: A030267.

Examples

			Rows: {1}; {1,3}; {1,5,8}; {1,7,17,21}; ...
		

A270863 Self-composition of the Fibonacci sequence.

Original entry on oeis.org

0, 1, 2, 6, 17, 50, 147, 434, 1282, 3789, 11200, 33109, 97878, 289354, 855413, 2528850, 7476023, 22101326, 65338038, 193158521, 571033600, 1688143881, 4990651642, 14753839486, 43616704857, 128943855250, 381196100507, 1126928202714, 3331532438042, 9848993360069
Offset: 0

Views

Author

Oboifeng Dira, Mar 24 2016

Keywords

Comments

This sequence has the same relation to the Fibonacci numbers A000045 as A030267 has to the natural numbers A000027.
From Oboifeng Dira, Jun 28 2020: (Start)
This sequence can be generated from a family of composition pairs of generating functions g(f(x)), where k is an integer and where
f(x) = x/(1-k*x-x^2) and g(x) = (x+(k-1)*x^2)/(1-(3-2*k)*x-(3*k-k^2-1)*x^2).
Some cases of k values are:
k=-5, f(x) g.f. 0,A052918(-1)^n and g(x) g.f. 0,A081571
k=-4, f(x) g.f. A001076(-1)^(n+1) and g(x) g.f. 0,A081570
k=-3, f(x) g.f. A006190(-1)^(n+1) and g(x) g.f. 0,A081569
k=-2, f(x) g.f. A215936(n+2) and g(x) g.f. 0,A081568
k=-1, f(x) g.f. A039834(n+2) and g(x) g.f. 0,A081567
k=0, f(x) g.f. A000035 and g(x) g.f. 0,A001519(n+1)
k=1, f(x) g.f. A000045 and g(x) g.f. A000045
k=2, f(x) g.f. A000129 and g(x) g.f. 0,A039834(n+1)
k=3, f(x) g.f. A006190 and g(x) g.f. 0,A001519(-1)^n
k=4, f(x) g.f. A001076 and g(x) g.f. 0,A093129(-1)^n
k=5, f(x) g.f. 0,A052918 and g(x) g.f. 0,A192240(-1)^n
k=6, f(x) g.f. A005668 and g(x)=(x+5*x^2)/(1+9*x+19*x^2)
k=7, f(x) g.f. 0,A054413 and g(x)=(x+6*x^2)/(1+11*x+29*x^2).
(End)

Examples

			a(5) = 3*a(4)+a(3)-3*a(2)-a(1) = 51+6-6-1 = 50.
		

Crossrefs

Programs

  • Magma
    I:=[0, 1, 2, 6]; [m le 4 select I[m] else 3*Self(m-1)+Self(m-2)-3*Self(m-3)-Self(m-4): m in [1..30]]; // Marius A. Burtea, Aug 03 2019
  • Maple
    f:= x-> x/(1-x-x^2):
    a:= n-> coeff(series(f(f(x)), x, n+1), x, n):
    seq(a(n), n=0..30);
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,-3,1,3]^(n-1)*[1;2;6;17])[1,1] \\ Charles R Greathouse IV, Mar 24 2016
    
  • PARI
    concat(0, Vec(x*(1-x-x^2)/(1-3*x-x^2+3*x^3+x^4) + O(x^40))) \\ Colin Barker, Mar 24 2016
    

Formula

a(n) = 3*a(n-1)+a(n-2)-3*a(n-3)-a(n-4) for n > 3, a(0)=0, a(1)=1, a(2)=2, a(3)=6.
G.f.: x*(1-x-x^2) / (1-3*x-x^2+3*x^3+x^4). - Colin Barker, Mar 24 2016
G.f.: B(B(x)) where B(x) is the g.f. of A000045. - Joerg Arndt, Mar 25 2016
a(n) = (phi*((phi^2 + 5^(1/4)*sqrt(3*phi))^n - (phi^2 - 5^(1/4)*sqrt(3*phi))^n) + (psi^2 + 5^(1/4)*sqrt(3*psi))^n - (psi^2 - 5^(1/4)*sqrt(3*psi))^n)/(2^n * 5^(3/4) * sqrt(3*phi)), where phi = (sqrt(5) + 1)/2 is the golden ratio, and psi = 1/phi = (sqrt(5) - 1)/2. - Vladimir Reshetnikov, Aug 01 2019
0 = a(n)*(a(n) +6*a(n+1) -a(n+2)) +a(n+1)*(8*a(n+1) -9*a(n+2) +a(n+3)) +a(n+2)*(-8*a(n+2) +6*a(n+3)) +a(n+3)*(-a(n+3)) if n>=0. - Michael Somos, Feb 05 2022

A121462 Triangle read by rows: T(n,k) is the number of nondecreasing Dyck paths of semilength n, having pyramid weight k (1 <= k <= n).

Original entry on oeis.org

1, 0, 2, 0, 1, 4, 0, 1, 4, 8, 0, 1, 5, 12, 16, 0, 1, 6, 18, 32, 32, 0, 1, 7, 25, 56, 80, 64, 0, 1, 8, 33, 88, 160, 192, 128, 0, 1, 9, 42, 129, 280, 432, 448, 256, 0, 1, 10, 52, 180, 450, 832, 1120, 1024, 512, 0, 1, 11, 63, 242, 681, 1452, 2352, 2816, 2304, 1024, 0, 1, 12, 75, 316
Offset: 1

Views

Author

Emeric Deutsch, Jul 31 2006

Keywords

Comments

A pyramid in a Dyck word (path) is a factor of the form U^h D^h, where U=(1,1), D=(1,-1) and h is the height of the pyramid. A pyramid in a Dyck word w is maximal if, as a factor in w, it is not immediately preceded by a u and immediately followed by a d. The pyramid weight of a Dyck path (word) is the sum of the heights of its maximal pyramids.
Row sums are the odd-subscripted Fibonacci numbers (A001519). T(n,n)=2^(n-1). Sum_{k=1..n} k*T(n,k) = A030267(n).
Mirror image of triangle in A153342. - Philippe Deléham, Dec 31 2008
Essentially triangle given by (0,1/2,1/2,0,0,0,0,0,0,0,...) DELTA (2,0,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 30 2011
A121462 is jointly generated with A208341 as an array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1; for n > 1, u(n,x) = x*u(n-1,x) + x*v(n-1) and v(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 11 2012

Examples

			T(4,3)=4 because we have (UD)U(UD)(UD)D, U(UD)(UD)(UD)D, U(UD)(UUDD)D and U(UUDD)(UD)D, where U=(1,1) and D=(1,-1) (the maximal pyramids are shown between parentheses).
Triangle starts:
  1;
  0,  2;
  0,  1,  4;
  0,  1,  4,  8;
  0,  1,  5, 12, 16;
  0,  1,  6, 18, 32, 32;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n=1 and k=1 then 1 elif k=1 then 0 elif k<=n then sum(binomial(k-1,j)*binomial(n-k-1+j,j-1),j=0..k-1) else 0 fi end: for n from 1 to 13 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + (x + 1) v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A121462 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208341 *)
    (* Clark Kimberling, Mar 11 2012 *)

Formula

T(n,k) = Sum_{j=0..k-1} binomial(k-1,j)*binomial(n-k-1+j,j-1) for 2 <= k <= n; T(1,1)=1; T(n,1)=0 for n >= 2.
G.f.: G = G(t,z) = tz(1-z)/(1-2tz-z+tz^2).
T(n+1,k+1) = A062110(n,k)*2^(2*k-n). - Philippe Deléham, Aug 01 2006

A326346 Total number of partitions in the partitions of compositions of n.

Original entry on oeis.org

0, 1, 4, 14, 47, 151, 474, 1457, 4414, 13210, 39155, 115120, 336183, 976070, 2819785, 8110657, 23239662, 66362960, 188930728, 536407146, 1519205230, 4293061640, 12106883585, 34079016842, 95762829405, 268670620736, 752676269695, 2105751165046, 5883798478398
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2019

Keywords

Examples

			a(3) = 14 = 1+1+1+2+2+2+2+3 counts the partitions in 3, 21, 111, 2|1, 11|1, 1|2, 1|11, 1|1|1.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, [1, 0], (p-> p+
          [0, p[1]])(add(combinat[numbpart](j)*b(n-j), j=1..n)))
        end:
    a:= n-> b(n)[2]:
    seq(a(n), n=0..32);
  • Mathematica
    b[n_] := b[n] = If[n==0, {1, 0}, Function[p, p + {0, p[[1]]}][Sum[ PartitionsP[j] b[n-j], {j, 1, n}]]];
    a[n_] := b[n][[2]];
    a /@ Range[0, 32] (* Jean-François Alcover, Dec 05 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n} k * A060642(n,k).
a(n) ~ c * d^n * n, where d = A246828 = 2.69832910647421123126399866618837633... and c = 0.171490233695958246364725709205670983251448838158816... - Vaclav Kotesovec, Sep 14 2019

A188137 Riordan array (1, x*(1-x)/(1-3*x+x^2)).

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 13, 14, 6, 1, 34, 46, 27, 8, 1, 89, 145, 107, 44, 10, 1, 233, 444, 393, 204, 65, 12, 1, 610, 1331, 1371, 854, 345, 90, 14, 1, 1597, 3926, 4607, 3336, 1620, 538, 119, 16, 1, 4181, 11434, 15045, 12390, 6997, 2799, 791, 152, 18, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Mar 21 2011

Keywords

Comments

The column of index 0 contains a 1 followed by zeros and is not reproduced in this triangle.
The second argument of the array definition is A(x) = A000045(x/(1-x)) = A001519(x)-1.
Triangle T(n,k), 1 <= k <= n, given by (0, 2, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 26 2012

Examples

			Triangle begins:
   1;
   2,   1;
   5,   4,   1;
  13,  14,   6,  1;
  34,  46,  27,  8,  1;
  89, 145, 107, 44, 10, 1;
From _Philippe Deléham_, Jan 26 2012: (Start)
Triangle (0,2,1/2,1/2,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,...) begins:
  1;
  0,  1;
  0,  2,   1;
  0,  5,   4,   1;
  0, 13,  14,   6,  1;
  0, 34,  46,  27,  8,  1;
  0, 89, 145, 107, 44, 10, 1; (End)
		

Crossrefs

Cf. A001519 (column 1), A030267 (column 2).

Programs

  • Maple
    A188137 := proc(n,m) add( binomial(n-1,k-1) *add(binomial(i,k-m-i) *binomial(m+i-1,m-1),i=ceil((k-m)/2)..k-m),k=m..n) ; end proc:
    seq(seq(A188137(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Mar 30 2011
  • Mathematica
    t[n_, m_] := Sum[ Binomial[n - 1, k - 1]*Sum[ Binomial[i, k - m - i]*Binomial[m + i - 1, m - 1], {i, Ceiling[(k - m)/2], k - m}], {k, m, n}]; Table[t[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Feb 21 2013, translated from Maxima *)
  • Maxima
    T(n,m):=sum(binomial(n-1,k-1) *sum(binomial(i,k-m-i) *binomial(m+i-1,m-1), i,ceiling((k-m)/2),k-m), k,m,n);

Formula

T(n,m) = Sum_{k=m..n} binomial(n-1,k-1) * Sum_{i=ceiling((k-m)/2)..k-m} binomial(i,k-m-i)*binomial(m+i-1,m-1), 0
T(n,m) = Sum_{i=1..n-m+1} A001519(i)*T(n-i,m-1).
T(n,1) = A001519(n).
Sum_{m=1..n} T(n,m) = A007052(n-1).
G.f.: (1-3x+x^2)/(1-(3+y)*x + (1+y)*x^2). - Philippe Deléham, Jan 26 2012

A119749 Number of compositions of n into odd blocks with one element in each block distinguished.

Original entry on oeis.org

1, 1, 4, 7, 15, 32, 65, 137, 284, 591, 1231, 2560, 5329, 11089, 23076, 48023, 99935, 207968, 432785, 900633, 1874236, 3900319, 8116639, 16890880, 35150241, 73148321, 152223044, 316779047, 659223215, 1371856032, 2854858465
Offset: 1

Author

Louis Shapiro, Jul 30 2006

Keywords

Comments

The sequence is the INVERT transform of the aerated odd integers. - Gary W. Adamson, Feb 02 2014
Number of compositions of n into odd parts where there is 1 sort of part 1, 3 sorts of part 3, 5 sorts of part 5, ... , 2*k-1 sorts of part 2*k-1. - Joerg Arndt, Aug 04 2014

Examples

			a(3) = 4 since Abc, aBc, abC come from one block of size 3 and A/B/C comes from having three blocks. The capital letters are the distinguished elements.
		

Crossrefs

Cf. A105309, A052530, A000045, A030267. Row sums of A292835.

Programs

  • Mathematica
    Rest@ CoefficientList[ Series[x(1 + x^2)/(x^4 - x^3 - 2x^2 - x + 1), {x, 0, 50}], x] (* Robert G. Wilson v *)

Formula

G.f.: (x+x^3)/(x^4 - x^3 -2x^2 -x +1).
a(n) = A092886(n)+A092886(n-2). - R. J. Mathar, Mar 08 2018
Sum_{k=0..n} a(k) = (3*a(n) + 2*a(n-1) - a(n-3))/2 - 1. - Xilin Wang and Greg Dresden, Aug 27 2020
Showing 1-10 of 17 results. Next