A301699 Generating function = g(g(x)), where g(x) = g.f. of Jacobsthal numbers A001045.
0, 1, 2, 8, 26, 94, 330, 1178, 4186, 14914, 53098, 189122, 673530, 2398834, 8543498, 30428162, 108371354, 385970386, 1374653610, 4895901602, 17437011514, 62102837746, 221182535242, 787753281218, 2805624912090, 9992381298706, 35588393716202
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Oboifeng Dira, A Note on Composition and Recursion, Southeast Asian Bulletin of Mathematics (2017), Vol. 41, Issue 6, 849-853.
- Index entries for linear recurrences with constant coefficients, signature (3,4,-6,-4).
Programs
-
Magma
I:=[0,1,2,8]; [n le 4 select I[n] else 3*Self(n-1)+4*Self(n-2)-6*Self(n-3)-4*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Mar 30 2018
-
Maple
f:=proc(a,b) local t1; t1:=(x-a*x^2-b*x^3)/(1-3*a*x+(2*a^2-3*b)*x^2+3*a*b*x^3 + b^2*x^4); lprint(t1); series(t1,x,50); seriestolist(%); end; f(1,2);
-
Mathematica
CoefficientList[Series[(-2 x^3 - x^2 + x) / (4 x^4 + 6 x^3 - 4 x^2 - 3 x + 1), {x, 0, 33}], x] (* Vincenzo Librandi, Mar 30 2018 *)
Formula
G.f.: (-2*x^3-x^2+x)/(4*x^4+6*x^3-4*x^2-3*x+1).
a(n) = 3*a(n-1) + 4*a(n-2) - 6*a(n-3) - 4*a(n-4). - Vincenzo Librandi, Mar 30 2018
Comments