Original entry on oeis.org
1, 9, 59, 335, 1732, 8404, 38969, 174637, 762063, 3255119, 13662512, 56511312, 230859729, 933104857, 3736739227, 14843364031, 58540883044, 229411923796, 893904838857, 3465221557357, 13370453635199
Offset: 1
-
LinearRecurrence[{12,-54,115,-132,108,-59,24,-6,1},{1,9,59,335,1732,8404,38969,174637,762063},30] (* Harvey P. Dale, Nov 07 2022 *)
A030267
Compose the natural numbers with themselves, A(x) = B(B(x)) where B(x) = x/(1-x)^2 is the generating function for natural numbers.
Original entry on oeis.org
1, 4, 14, 46, 145, 444, 1331, 3926, 11434, 32960, 94211, 267384, 754309, 2116936, 5914310, 16458034, 45638101, 126159156, 347769719, 956238170, 2623278946, 7181512964, 19622668679, 53522804976, 145753273225, 396323283724, 1076167858046, 2918447861686
Offset: 1
From _Petros Hadjicostas_, Jun 24 2019: (Start)
Recall that with m-color compositions, a part of size m may be colored with one of m colors.
We have a(1) = 1 because we only have one colored composition, namely 1_1, that has only 1 part.
We have a(2) = 4 because we have the following colored compositions of n = 2: 2_1, 2_2, 1_1 + 1_1; hence, a(2) = 1 + 1 + 2 = 4.
We have a(3) = 14 because we have the following colored compositions of n = 3: 3_1, 3_2, 3_3, 1_1 + 2_1, 1_1 + 2_2, 2_1 + 1_1, 2_2 + 1_1, 1_1 + 1_1 + 1_1; hence, a(3) = 1 + 1 + 1 + 2 + 2 + 2 + 2 + 3 = 14.
We have a(14) = 46 because we have the following colored compositions of n = 4:
(i) 4_1, 4_2, 4_3, 4_4; with a total of 4 parts.
(ii) 1_1 + 3_1, 1_1 + 3_2, 1_1 + 3_3, 3_1 + 1_1, 3_2 + 1_1, 3_3 + 1_1, 2_1 + 2_1, 2_1 + 2_2, 2_2 + 2_1, 2_2 + 2_2; with a total of 2 x 10 = 20 parts.
(iii) 1_1 + 1_1 + 2_1, 1_1 + 1_1 + 2_2, 1_1 + 2_1 + 1_1, 1_1 + 2_2 + 1_1, 2_1 + 1_1 + 1_1, 2_2 + 1_1 + 1_1; with a total of 3 x 6 = 18 parts.
(iv) 1_1 + 1_1 + 1_1 + 1_1; with a total of 4 parts.
Hence, a(4) = 4 + 20 + 18 + 4 = 46.
(End)
- R. P. Grimaldi, Compositions and the alternate Fibonacci numbers, Congressus Numerantium, 186, 2007, 81-96.
- T. D. Noe, Table of n, a(n) for n = 1..200
- A. K. Agarwal, n-colour compositions, Indian J. Pure Appl. Math. 31 (11) (2000), 1421-1427.
- E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170 (1997), 211-217.
- C. G. Bower, Transforms (2).
- R. X. F. Chen and L. W. Shapiro, On sequences G(n) satisfying G(n)=(d+2)G(n-1)-G(n-2), J. Integer Seq. 10 (2007), Article #07.8.1; see Proposition 17.
- Éva Czabarka, Rigoberto Flórez, and Leandro Junes, Some Enumerations on Non-Decreasing Dyck Paths, Electron. J. Combin., 22(1) (2015), #P1.3.
- Éva Czabarka, Rigoberto Flórez, and Leandro Junes, A Discrete Convolution on the Generalized Hosoya Triangle, J. Integer Seq., 18 (2015), Article #15.1.6.
- Éva Czabarka, Rigoberto Flórez, Leandro Junes, and José L. Ramírez, Enumerations of peaks and valleys on non-decreasing Dyck paths, Discrete Math. 341 (10) (2018), 2789-2807.
- A. Denise and R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math., 137 (1995), 155-176.
- Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, Counting Subwords in Non-Decreasing Dyck Paths, Journal of Integer Sequences, Vol. 28 (2025), Article 25.1.6. See pp. 6, 14-15, 17, 19.
- Meghann Moriah Gibson, Combinatorics of compositions, Master of Science, Georgia Southern University, 2017.
- Meghann Moriah Gibson, Daniel Gray, and Hua Wang, Combinatorics of n-color compositions, Discrete Mathematics 341 (2018), 3209-3226.
- Milan Janjic, Hessenberg Matrices and Integer Sequences, J. Integer Seq. 13 (2010), Article #10.7.8.
- N. J. A. Sloane, Transforms.
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
-
with(combinat): L[0]:=2: L[1]:=1: for n from 2 to 60 do L[n]:=L[n-1] +L[n-2] end do: seq(2*fibonacci(2*n)*1/5+(1/5)*n*L[2*n],n=1..30); # Emeric Deutsch, Jul 21 2008
-
Table[Sum[k Binomial[n+k-1,2k-1],{k,n}],{n,30}] (* or *) LinearRecurrence[ {6,-11,6,-1},{1,4,14,46},30] (* Harvey P. Dale, Aug 01 2011 *)
-
a(n)=(2*n*fibonacci(2*n+1)+(2-n)*fibonacci(2*n))/5
Name clarified using a comment of the author by
Peter Luschny, Aug 03 2019
A279282
Self-composition of the cubes; g.f.: A(x) = G(G(x)), where G(x) = g.f. of A000578.
Original entry on oeis.org
0, 1, 16, 182, 1720, 14149, 106944, 760463, 5160488, 33756514, 214369376, 1328496947, 8065970016, 48125315989, 282851349184, 1640791635086, 9409099218712, 53408767286521, 300417148670400, 1676056809217283, 9282172245277448, 51062759750186170, 279196558362482192, 1518068927980989575
Offset: 0
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Cubic Number
- Index entries for linear recurrences with constant coefficients, signature (20,-158,640,-1553,2920,-4806,5700,-6820,5700,-4806,2920,-1553,640,-158,20,-1).
-
CoefficientList[Series[x (1 - x)^4 (1 + 4 x + x^2) (1 - 4 x + 29 x^2 - 84 x^3 + 152 x^4 - 84 x^5 + 29 x^6 - 4 x^7 + x^8)/((1 + x^2)^4 (1 - 5 x + x^2)^4), {x, 0, 23}], x]
LinearRecurrence[{20,-158,640,-1553,2920,-4806,5700,-6820,5700,-4806,2920,-1553,640,-158,20,-1},{0,1,16,182,1720,14149,106944,760463,5160488,33756514,214369376,1328496947,8065970016,48125315989,282851349184,1640791635086},30] (* Harvey P. Dale, Sep 27 2024 *)
A302356
a(n) = coefficient of x^n in the n-th iteration (n-fold self-composition) of the g.f. of squares (A000290).
Original entry on oeis.org
1, 8, 123, 3064, 107355, 4880896, 273564907, 18252720536, 1413701944431, 124714304306536, 12347969626724127, 1356049318451627812, 163596640499821625005, 21508738592360523314552, 3060986664449504902865167, 468816798653492762623354936, 76889830949170048691162162275
Offset: 1
The initial coefficients of successive iterations of g.f. A(x) = x*(1 + x)/(1 - x)^3 are as follows:
n = 1: 0, (1), 4, 9, 16, 25, ... g.f. A(x)
n = 2: 0, 1, (8), 50, 276, 1397, ... g.f. A(A(x))
n = 3: 0, 1, 12, (123), 1164, 10420, ... g.f. A(A(A(x)))
n = 4: 0, 1, 16, 228, (3064), 39542, ... g.f. A(A(A(A(x))))
n = 5: 0, 1, 20, 365, 6360, (107355), ... g.f. A(A(A(A(A(x)))))
-
Table[SeriesCoefficient[Nest[Function[x, x (1 + x)/(1 - x)^3], x, n], {x, 0, n}], {n, 17}]
A276644
Self-composition of the repunits; g.f.: A(x) = G(G(x)), where G(x) = g.f. of A002275.
Original entry on oeis.org
0, 1, 22, 464, 9658, 199666, 4112922, 84558014, 1736623658, 35646098566, 731452470122, 15006822709814, 307859627711658, 6315326642698966, 129547066718721322, 2657377349777550614, 54509922224486463658, 1118139793621467673366, 22935894163202834676522, 470473020119757115115414
Offset: 0
Cf.
A030267 (self-composition of the natural numbers),
A030279 (self-composition of the squares),
A030280 (self-composition of the triangular numbers).
-
I:=[0,1,22,464]; [n le 4 select I[n] else 33*Self(n-1)-272*Self(n-2)+330*Self(n-3)-100*Self(n-4): n in [1..20]]; // Vincenzo Librandi, Sep 09 2016
-
LinearRecurrence[{33, -272, 330, -100}, {0, 1, 22, 464}, 20]
-
concat(0, Vec(x*(1-x)*(1-10*x)/((1-21*x+10*x^2)*(1-12*x+10*x^2)) + O(x^99))) \\ Altug Alkan, Sep 08 2016
A279284
Self-composition of the pentagonal numbers; g.f.: A(x) = G(G(x)), where G(x) = g.f. of A000326.
Original entry on oeis.org
0, 1, 10, 74, 469, 2662, 14115, 71360, 348143, 1652200, 7669883, 34969286, 157060011, 696514465, 3055404733, 13277356490, 57222978070, 244831062184, 1040760406476, 4398642943496, 18493603597214, 77388169532299, 322451025667910, 1338291853544522, 5534486308363461, 22812231761335189, 93741611639348947, 384122032722040412
Offset: 0
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Pentagonal Number
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (12,-51,91,-75,66,-28,15,-3,1).
-
CoefficientList[Series[x (1 - x)^3 (1 + 2 x) (1 - x + 7 x^2 - x^3)/(1 - 4 x + x^2 - x^3)^3, {x, 0, 25}], x]
LinearRecurrence[{12, -51, 91, -75, 66, -28, 15, -3, 1}, {0, 1, 10, 74, 469, 2662, 14115, 71360, 348143}, 26]
Showing 1-6 of 6 results.
Comments