A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A001871
Expansion of 1/(1 - 3*x + x^2)^2.
Original entry on oeis.org
1, 6, 25, 90, 300, 954, 2939, 8850, 26195, 76500, 221016, 632916, 1799125, 5082270, 14279725, 39935214, 111228804, 308681550, 853904015, 2355364650, 6480104231, 17786356776, 48715278000, 133167004200, 363372003625, 989900286774
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jean-Luc Baril, Toufik Mansour, José L. Ramírez, and Mark Shattuck, Catalan words avoiding a pattern of length four, Univ. de Bourgogne (France, 2024). See p. 5.
- Matthew Blair, Rigoberto Flórez, and Antara Mukherjee, Honeycombs in the Pascal triangle and beyond, arXiv:2203.13205 [math.HO], 2022. See p. 4.
- Karl Dilcher and Larry Ericksen, Polynomials and algebraic curves related to certain binary and b-ary overpartitions, arXiv:2405.12024 [math.CO], 2024. See p. 10.
- Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
- Rigoberto Flórez, Leandro Junes, and José L. Ramírez, Enumerating several aspects of non-decreasing Dyck paths, Discrete Mathematics, Vol. 342, Issue 11 (2019), 3079-3097. See page 3092.
- Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, Counting Subwords in Non-Decreasing Dyck Paths, Journal of Integer Sequences, Vol. 28 (2025), Article 25.1.6. See pp. 6, 15, 17, 19.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 23.
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243, 2012. - From _N. J. A. Sloane_, May 09 2012
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. (arXiv:1302.2274)
- Eunjeong Lee, Mikiya Masuda, and Seonjeong Park, On Schubert varieties of complexity one, arXiv:2009.02125 [math.AT], 2020.
- Valentin Ovsienko and Serge Tabachnikov, Dual numbers, weighted quivers, and extended Somos and Gale-Robinson sequences, arXiv:1705.01623 [math.CO], 2017. See p. 9.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- John Riordan, Notes to N. J. A. Sloane, Jul. 1968
- John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
Partial sums of
A001870 (one half of odd-indexed
A001629(n), n >= 2, Fibonacci convolution).
-
I:=[1, 6, 25, 90]; [n le 4 select I[n] else 6*Self(n-1)-11*Self(n-2)+6*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 10 2012
-
f:= gfun:-rectoproc({a(n)=6*a(n-1)-11*a(n-2)+6*a(n-3)-a(n-4),
a(0)=1,a(1)=6,a(2)=25,a(3)=90},a(n),remember):
map(f, [$0..50]); # Robert Israel, May 05 2017
# alternative
A001871 := proc(n)
option remember ;
if n <= 3 then
op(n+1,[1,6,25,90]) ;
else
6*procname(n-1)-11*procname(n-2)+6*procname(n-3)-procname(n-4) ;
end if;
end proc:
seq(A001871(n),n=0..10) ; # R. J. Mathar, Dec 16 2024
-
CoefficientList[Series[1/(1-3x+x^2)^2,{x,0,40}],x] (* Vincenzo Librandi, Jun 10 2012 *)
-
a(n)=((4*n+2)*fibonacci(2*n)+(7*n+5)*fibonacci(2*n+1))/5
-
Vec(1/(1-3*x+x^2)^2 + O(x^100)) \\ Altug Alkan, Oct 31 2015
A030267
Compose the natural numbers with themselves, A(x) = B(B(x)) where B(x) = x/(1-x)^2 is the generating function for natural numbers.
Original entry on oeis.org
1, 4, 14, 46, 145, 444, 1331, 3926, 11434, 32960, 94211, 267384, 754309, 2116936, 5914310, 16458034, 45638101, 126159156, 347769719, 956238170, 2623278946, 7181512964, 19622668679, 53522804976, 145753273225, 396323283724, 1076167858046, 2918447861686
Offset: 1
From _Petros Hadjicostas_, Jun 24 2019: (Start)
Recall that with m-color compositions, a part of size m may be colored with one of m colors.
We have a(1) = 1 because we only have one colored composition, namely 1_1, that has only 1 part.
We have a(2) = 4 because we have the following colored compositions of n = 2: 2_1, 2_2, 1_1 + 1_1; hence, a(2) = 1 + 1 + 2 = 4.
We have a(3) = 14 because we have the following colored compositions of n = 3: 3_1, 3_2, 3_3, 1_1 + 2_1, 1_1 + 2_2, 2_1 + 1_1, 2_2 + 1_1, 1_1 + 1_1 + 1_1; hence, a(3) = 1 + 1 + 1 + 2 + 2 + 2 + 2 + 3 = 14.
We have a(14) = 46 because we have the following colored compositions of n = 4:
(i) 4_1, 4_2, 4_3, 4_4; with a total of 4 parts.
(ii) 1_1 + 3_1, 1_1 + 3_2, 1_1 + 3_3, 3_1 + 1_1, 3_2 + 1_1, 3_3 + 1_1, 2_1 + 2_1, 2_1 + 2_2, 2_2 + 2_1, 2_2 + 2_2; with a total of 2 x 10 = 20 parts.
(iii) 1_1 + 1_1 + 2_1, 1_1 + 1_1 + 2_2, 1_1 + 2_1 + 1_1, 1_1 + 2_2 + 1_1, 2_1 + 1_1 + 1_1, 2_2 + 1_1 + 1_1; with a total of 3 x 6 = 18 parts.
(iv) 1_1 + 1_1 + 1_1 + 1_1; with a total of 4 parts.
Hence, a(4) = 4 + 20 + 18 + 4 = 46.
(End)
- R. P. Grimaldi, Compositions and the alternate Fibonacci numbers, Congressus Numerantium, 186, 2007, 81-96.
- T. D. Noe, Table of n, a(n) for n = 1..200
- A. K. Agarwal, n-colour compositions, Indian J. Pure Appl. Math. 31 (11) (2000), 1421-1427.
- E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170 (1997), 211-217.
- C. G. Bower, Transforms (2).
- R. X. F. Chen and L. W. Shapiro, On sequences G(n) satisfying G(n)=(d+2)G(n-1)-G(n-2), J. Integer Seq. 10 (2007), Article #07.8.1; see Proposition 17.
- Éva Czabarka, Rigoberto Flórez, and Leandro Junes, Some Enumerations on Non-Decreasing Dyck Paths, Electron. J. Combin., 22(1) (2015), #P1.3.
- Éva Czabarka, Rigoberto Flórez, and Leandro Junes, A Discrete Convolution on the Generalized Hosoya Triangle, J. Integer Seq., 18 (2015), Article #15.1.6.
- Éva Czabarka, Rigoberto Flórez, Leandro Junes, and José L. Ramírez, Enumerations of peaks and valleys on non-decreasing Dyck paths, Discrete Math. 341 (10) (2018), 2789-2807.
- A. Denise and R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math., 137 (1995), 155-176.
- Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, Counting Subwords in Non-Decreasing Dyck Paths, Journal of Integer Sequences, Vol. 28 (2025), Article 25.1.6. See pp. 6, 14-15, 17, 19.
- Meghann Moriah Gibson, Combinatorics of compositions, Master of Science, Georgia Southern University, 2017.
- Meghann Moriah Gibson, Daniel Gray, and Hua Wang, Combinatorics of n-color compositions, Discrete Mathematics 341 (2018), 3209-3226.
- Milan Janjic, Hessenberg Matrices and Integer Sequences, J. Integer Seq. 13 (2010), Article #10.7.8.
- N. J. A. Sloane, Transforms.
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
-
with(combinat): L[0]:=2: L[1]:=1: for n from 2 to 60 do L[n]:=L[n-1] +L[n-2] end do: seq(2*fibonacci(2*n)*1/5+(1/5)*n*L[2*n],n=1..30); # Emeric Deutsch, Jul 21 2008
-
Table[Sum[k Binomial[n+k-1,2k-1],{k,n}],{n,30}] (* or *) LinearRecurrence[ {6,-11,6,-1},{1,4,14,46},30] (* Harvey P. Dale, Aug 01 2011 *)
-
a(n)=(2*n*fibonacci(2*n+1)+(2-n)*fibonacci(2*n))/5
Name clarified using a comment of the author by
Peter Luschny, Aug 03 2019
A060921
Bisection of Fibonacci triangle A037027: odd-indexed members of column sequences of A037027 (not counting leading zeros).
Original entry on oeis.org
1, 3, 2, 8, 10, 3, 21, 38, 22, 4, 55, 130, 111, 40, 5, 144, 420, 474, 256, 65, 6, 377, 1308, 1836, 1324, 511, 98, 7, 987, 3970, 6666, 6020, 3130, 924, 140, 8, 2584, 11822, 23109, 25088, 16435, 6588, 1554, 192, 9
Offset: 0
{1}; {3,2}; {8,10,3}; {21,38,22,4}; ...; pFo(2,x) = 2*(1-x).
A054444
Even-indexed terms of A001629(n), n >= 2, (Fibonacci convolution).
Original entry on oeis.org
1, 5, 20, 71, 235, 744, 2285, 6865, 20284, 59155, 170711, 488400, 1387225, 3916061, 10996580, 30737759, 85573315, 237387960, 656451269, 1810142185, 4978643596, 13661617195, 37409025455, 102238082976, 278920277425, 759695287349
Offset: 0
- Jinyuan Wang, Table of n, a(n) for n = 0..1000
- Matthew Blair, Rigoberto Flórez, and Antara Mukherjee, Honeycombs in the Pascal triangle and beyond, arXiv:2203.13205 [math.HO], 2022. See p. 5.
- Éva Czabarka, Rigoberto Flórez, and Leandro Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
- Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, Counting Subwords in Non-Decreasing Dyck Paths, Journal of Integer Sequences, Vol. 28 (2025), Article 25.1.6. See pp. 5, 17, 19.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- B. E. Tenner, Interval structures in the Bruhat and weak orders, arXiv:2001.05011 [math.CO], 2020.
A024458
a(n) = s(1)*s(n) + s(2)*s(n-1) + ... + s(k)*s(n+1-k), where k = floor((n+1)/2), s = (Fibonacci numbers).
Original entry on oeis.org
1, 1, 3, 5, 12, 19, 40, 65, 130, 210, 404, 654, 1227, 1985, 3653, 5911, 10720, 17345, 31090, 50305, 89316, 144516, 254568, 411900, 720757, 1166209, 2029095, 3283145, 5684340, 9197455, 15855964, 25655489, 44061862, 71293590, 122032508
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,3,-2,0,-2,-3,1,1).
-
[(&+[Fibonacci(j+1)*Fibonacci(n-j): j in [0..Floor((n-1)/2)]]): n in [1..50]]; // G. C. Greubel, Apr 06 2022
-
Table[((13-5(-1)^n +10n)Fibonacci[n] + (1-(-1)^n +2n)LucasL[n] +8Sin[Pi*n/2])/40, {n, 30}] (* Vladimir Reshetnikov, Oct 03 2016 *)
LinearRecurrence[{1,3,-2,0,-2,-3,1,1},{1,1,3,5,12,19,40,65},40] (* Harvey P. Dale, Mar 02 2023 *)
-
def A024458(n): return sum(fibonacci(j+1)*fibonacci(n-j) for j in (0..((n-1)//2)) )
[A024458(n) for n in (1..50)] # G. C. Greubel, Apr 06 2022
A094565
Triangle read by rows: binary products of Fibonacci numbers.
Original entry on oeis.org
1, 2, 3, 5, 6, 8, 13, 15, 16, 21, 34, 39, 40, 42, 55, 89, 102, 104, 105, 110, 144, 233, 267, 272, 273, 275, 288, 377, 610, 699, 712, 714, 715, 720, 754, 987, 1597, 1830, 1864, 1869, 1870, 1872, 1885, 1974, 2584, 4181, 4791, 4880, 4893, 4895, 4896, 4901, 4935, 5168, 6765
Offset: 1
Triangle begins:
1;
2, 3;
5, 6 8;
13, 15, 16, 21;
34, 39, 40, 42, 55;
89, 102, 104, 105, 110, 144; ...
-
Flat(List([1..12], n-> List([1..n], k-> Fibonacci(2*k)*Fibonacci(2*n-2*k+1) ))); # G. C. Greubel, Jul 15 2019
-
[Fibonacci(2*k)*Fibonacci(2*n-2*k+1): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 15 2019
-
Table[Fibonacci[2*k]*Fibonacci[2*n-2*k+1], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jul 15 2019 *)
-
row(n) = vector(n, k, fibonacci(2*k)*fibonacci(2*n-2*k+1));
tabl(nn) = for(n=1, nn, print(row(n))); \\ Michel Marcus, May 03 2016
-
[[fibonacci(2*k)*fibonacci(2*n-2*k+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 15 2019
A129722
Number of 0's in even position in all Fibonacci binary words of length n. A Fibonacci binary word is a binary word having no 00 subword.
Original entry on oeis.org
0, 0, 1, 1, 5, 6, 19, 25, 65, 90, 210, 300, 654, 954, 1985, 2939, 5911, 8850, 17345, 26195, 50305, 76500, 144516, 221016, 411900, 632916, 1166209, 1799125, 3283145, 5082270, 9197455, 14279725, 25655489, 39935214, 71293590, 111228804, 197452746, 308681550
Offset: 0
a(4)=5 because in 1110', 1111, 1101, 10'10', 10'11, 0110', 0111 and 0101 one has altogether five 0's in even position (marked by ').
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Moussa Benoumhani, On the Modes of the Independence Polynomial of the Centipede, Journal of Integer Sequences, Vol. 15 (2012), #12.5.1.
- É. Czabarka, R. Flórez, and L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
- Index entries for linear recurrences with constant coefficients, signature (1,4,-3,-4,1,1).
-
G:=z^2/(1-z-z^2)^2/(1+z-z^2): Gser:=series(G,z=0,45): seq(coeff(Gser,z,n),n=0..42);
-
CoefficientList[Series[x^2/((1 + x - x^2)*(1 - x - x^2)^2), {x,0,50}], x] (* G. C. Greubel, Mar 09 2017 *)
LinearRecurrence[{1,4,-3,-4,1,1},{0,0,1,1,5,6},40] (* Harvey P. Dale, Apr 02 2018 *)
-
x='x+O('x^50); concat([0,0], Vec(x^2/((1 + x - x^2)*(1 - x - x^2)^2))) \\ G. C. Greubel, Mar 09 2017
A238846
Expansion of (1-2*x)/(1-3*x+x^2)^2.
Original entry on oeis.org
1, 4, 13, 40, 120, 354, 1031, 2972, 8495, 24110, 68016, 190884, 533293, 1484020, 4115185, 11375764, 31358376, 86223942, 236540915, 647556620, 1769374931, 4826148314, 13142564448, 35736448200, 97037995225, 263156279524, 712795854421, 1928547574912, 5212430732760
Offset: 0
a(0) = 1*1 = 1;
a(1) = 1*3 + 1*1 = 4;
a(2) = 1*8 + 1*3 + 2*1 = 13;
a(3) = 1*21 + 1*8 + 2*3 + 5*1 = 40;
a(4) = 1*55 + 1*21 + 2*8 + 5*3 + 13*1 = 120; etc. (from first recurrence formula).
a(0) = 3*0 - 0 + 1 = 1;
a(1) = 3*1 - 0 + 1 = 4;
a(2) = 3*4 - 1 + 2 = 13;
a(3) = 3*13 - 4 + 5 = 40;
a(4) = 3*40 - 13 + 13 = 120; etc (from second recurrence formula).
G.f. = 1 + 4*x + 13*x^2 + 40*x^3 + 120*x^4 + 354*x^5 + 1031*x^6 + ... - _Michael Somos_, Nov 23 2021
- Michael De Vlieger, Table of n, a(n) for n = 0..2385
- Sergi Elizalde, Rigoberto Flórez, and José Luis Ramírez, Enumerating symmetric peaks in non-decreasing Dyck paths, Ars Mathematica Contemporanea (2021).
- David Eppstein, Non-crossing Hamiltonian Paths and Cycles in Output-Polynomial Time, arXiv:2303.00147 [cs.CG], 2023, p. 20.
- Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, Counting Subwords in Non-Decreasing Dyck Paths, J. Int. Seq. (2025) Vol. 28, Art. No. 25.1.6. See pp. 6, 15, 17, 19.
- Valentin Ovsienko, Shadow sequences of integers, from Fibonacci to Markov and back, arXiv:2111.02553 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
-
LinearRecurrence[{6, -11, 6, -1}, {1, 4, 13, 40}, 30] (* Bruno Berselli, Mar 06 2014 *)
a[ n_] := If[n < 0, SeriesCoefficient[ x^3*(2 - x)/(1 - 3*x + x^2)^2, {x, 0, -n}], SeriesCoefficient[ (1 - 2*x)/(1 - 3*x + x^2)^2, {x, 0, n}]]; (* Michael Somos, Nov 23 2021 *)
-
{a(n) = if(n<0, polcoeff( x^3*(2-x)/(1-3*x+x^2)^2 + x*O(x^-n), -n), polcoeff( (1-2*x)/(1-3*x+x^2)^2 + x*O(x^n), n))}; /* Michael Somos, Nov 23 2021 */
A213777
Rectangular array: (row n) = b**c, where b(h) = F(h), c(h) = F(h+1), F=A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 3, 2, 7, 5, 3, 15, 12, 8, 5, 30, 25, 19, 13, 8, 58, 50, 40, 31, 21, 13, 109, 96, 80, 65, 50, 34, 21, 201, 180, 154, 130, 105, 81, 55, 34, 365, 331, 289, 250, 210, 170, 131, 89, 55, 655, 600, 532, 469, 404, 340, 275, 212, 144, 89, 1164, 1075, 965, 863
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1....3....7....15....30....58
2....5....12...25....50....96
3....8....19...40....80....154
5....13...31...65....130...250
8....21...50...105...210...404
13...34...81...170...340...654
-
b[n_] := Fibonacci[n]; c[n_] := Fibonacci[n + 1];
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213777 *)
Table[t[n, n], {n, 1, 40}] (* A001870 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A152881 *)
Showing 1-10 of 18 results.
Comments