cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001870 Expansion of (1-x)/(1 - 3*x + x^2)^2.

Original entry on oeis.org

1, 5, 19, 65, 210, 654, 1985, 5911, 17345, 50305, 144516, 411900, 1166209, 3283145, 9197455, 25655489, 71293590, 197452746, 545222465, 1501460635, 4124739581, 11306252545, 30928921224, 84451726200, 230204999425
Offset: 0

Views

Author

Keywords

Comments

a(n) = ((n+1)*F(2*n+3)+(2*n+3)*F(2*(n+1)))/5 with F(n)=A000045(n) (Fibonacci numbers). One half of odd-indexed A001629(n), n >= 2 (Fibonacci convolution).
Convolution of F(2n+1) (A001519) and F(2n+2) (A001906(n+1)). - Graeme McRae, Jun 07 2006
Number of reentrant corners along the lower contours of all directed column-convex polyominoes of area n+3 (a reentrant corner along the lower contour is a vertical step that is followed by a horizontal step). a(n) = Sum_{k=0..ceiling((n+1)/2)} k*A121466(n+3,k). - Emeric Deutsch, Aug 02 2006
From Wolfdieter Lang, Jan 02 2012: (Start)
a(n) = A024458(2*n), n >= 1 (bisection, even arguments).
a(n) is also the odd part of the bisection of the half-convolution of the sequence A000045(n+1), n >= 0, with itself. See a comment on A201204 for the definition of the half-convolution of a sequence with itself. There one also finds the rule for the o.g.f. which in this case is Chato(x)/2 with the o.g.f. Chato(x) = 2*(1-x)/(1-3*x+x^2)^2 of A001629(2*n+3), n >= 0.
(End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A060921(n+1, 1)/2.
Partial sums of A030267. First differences of A001871.
Cf. A121466.
Cf. A023610.

Programs

  • GAP
    F:=Fibonacci;; List([0..30], n-> ((n+1)*F(2*n+3)+(2*n+3)*F(2*(n+1)))/5); # G. C. Greubel, Jul 15 2019
  • Haskell
    a001870 n = a001870_list !! n
    a001870_list = uncurry c $ splitAt 1 $ tail a000045_list where
       c us vs'@(v:vs) = (sum $ zipWith (*) us vs') : c (v:us) vs
    -- Reinhard Zumkeller, Oct 31 2013
    
  • Magma
    I:=[1, 5, 19, 65]; [n le 4 select I[n] else 6*Self(n-1) -11*Self(n-2)+6*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 10 2012
    
  • Maple
    A001870:=-(-1+z)/(z**2-3*z+1)**2; # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    CoefficientList[Series[(1-x)/(1-3*x+x^2)^2,{x,0,40}],x] (* Vincenzo Librandi, Jun 10 2012 *)
    LinearRecurrence[{6,-11,6,-1},{1,5,19,65},30] (* Harvey P. Dale, Aug 17 2013 *)
    With[{F=Fibonacci}, Table[((n+1)*F[2*n+3]+(2*n+3)*F[2*n+2])/5, {n,0,30}]] (* G. C. Greubel, Jul 15 2019 *)
  • PARI
    Vec((1-x)/(1-3*x+x^2)^2+O(x^30)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • Sage
    f=fibonacci; [((n+1)*f(2*n+3)+(2*n+3)*f(2*n+2))/5 for n in (0..30)] # G. C. Greubel, Jul 15 2019
    

Formula

a(n) = Sum_{k=1..n+1} k*binomial(n+k+1, 2k). - Emeric Deutsch, Jun 11 2003
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 10 2012
a(n) = (A238846(n) + A001871(n))/2. - Philippe Deléham, Mar 06 2014
a(n) = ((2*n-1)*Fibonacci(2*n) - n*Fibonacci(2*n-1))/5 [Czabarka et al.]. - N. J. A. Sloane, Sep 18 2018
E.g.f.: exp(3*x/2)*(5*(5 + 11*x)*cosh(sqrt(5)*x/2) + sqrt(5)*(13 + 25*x)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Mar 04 2025

Extensions

More terms from Christian G. Bower

A058071 A Fibonacci triangle: triangle T(n,k) = Fibonacci(k+1)*Fibonacci(n-k+1), for n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 2, 2, 3, 5, 3, 4, 3, 5, 8, 5, 6, 6, 5, 8, 13, 8, 10, 9, 10, 8, 13, 21, 13, 16, 15, 15, 16, 13, 21, 34, 21, 26, 24, 25, 24, 26, 21, 34, 55, 34, 42, 39, 40, 40, 39, 42, 34, 55, 89, 55, 68, 63, 65, 64, 65, 63, 68, 55, 89, 144, 89, 110, 102, 105, 104, 104, 105, 102, 110, 89, 144
Offset: 0

Views

Author

N. J. A. Sloane, Nov 24 2000

Keywords

Comments

Or, multiplication table of the positive Fibonacci numbers read by antidiagonals.
Or, triangle of products of nonzero Fibonacci numbers.
Or, a two-dimensional square Fibonacci array read by antidiagonals, with offset 1: T(1,1) = T(1,2) = T(2,1) = T(2,2) = 1; thereafter T(m,n) = max {T(m,n-2) + T(m,n-1), T(m-2,n) + T(m-1,n), T(m-2,n-2) + T(m-1,n-1)}. If "max" is changed to "min" we get A283845. - N. J. A. Sloane, Mar 31 2017
Row sums are A001629 (Fibonacci numbers convolved with themselves.). The main diagonal and first subdiagonal are Fibonacci numbers, for other entries T(n,k) = T(n-1,k) + T(n-2,k). The central numbers form A006498. - Gerald McGarvey, Jun 02 2005
Alternating row sums = (1, 0, 3, 0, 8, ...), given by Fibonacci(2n) if n even, else zero.
Row n = edge-counting vector for the Fibonacci cube F(n+1) embedded in the natural way in the hypercube Q(n+1). - Emanuele Munarini, Apr 01 2008
The augmentation of A058071 is the triangle A193595. To fit the definition of augmented triangle at A103091, it is helpful to represent A058071 using p(n,k)=F(k+1)*F(n+1-k) for 0<=k<=n. - Clark Kimberling, Jul 31 2011
T(n,k) = number of appearances of a(k) in p(n) in the n-th convergent p(n)/q(n) of the formal infinite continued fraction [a(0), a(1), ...]; e.g., p(3) = a(0)*a(1)*a(2)*a(3) + a(0)*a(1) + a(0)*a(3) + a(2)*a(3) + 1. Also, T(n,k) = number of appearances of a(k+1) in q(n+1); e.g., q(3) = a(1)*a(2)*a(3) + a(1) + a(3). - Clark Kimberling, Dec 21 2015
Each row is a palindrome, and the central term of row 2n is the square of the F(n+1), where F = A000045 (Fibonacci numbers). - Clark Kimberling, Dec 21 2015
Also called Hosoya's triangle, after the Japanese chemist Haruo Hosoya (b. 1936). - Amiram Eldar, Jun 10 2021

Examples

			Triangle begins as:
   1;
   1,  1;
   2,  1,  2;
   3,  2,  2,  3;
   5,  3,  4,  3,  5;
   8,  5,  6,  6,  5,  8;
  13,  8, 10,  9, 10,  8, 13;
  21, 13, 16, 15, 15, 16, 13, 21;
  34, 21, 26, 24, 25, 24, 26, 21, 34;
  ...
As a square array:
   1,  1,  2,  3,  5,  8, 13, 21, ...
   1,  1,  2,  3,  5,  8, 13, 21, ...
   2,  2,  4,  6, 10, 16, 26, ...
   3,  3,  6,  9, 15, 24, ...
   5,  5, 10, 15, 25, ...
   8,  8, 16, 24, ...
  13, 13, 26, ...
  21, 21, ...
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
  • Thomas Koshy, "Fibonacci and Lucas Numbers and Applications", Chap. 15, Hosoya's Triangle, Wiley, New York, 2001.

Crossrefs

Programs

  • Haskell
    a058071 n k = a058071_tabl !! n !! k
    a058071_row n = a058071_tabl !! n
    a058071_tabl = map (\fs -> zipWith (*) fs $ reverse fs) a104763_tabl
    -- Reinhard Zumkeller, Aug 15 2013
    
  • Magma
    [Fibonacci(k+1)*Fibonacci(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 06 2022
    
  • Mathematica
    row[n_] := Table[Fibonacci[k]*Fibonacci[n-k+1], {k, 1, n}]; Table[row[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 16 2013 *)
  • PARI
    T(n,k)=fibonacci(k)*fibonacci(n+2-k) \\ Charles R Greathouse IV, Feb 07 2017
    
  • SageMath
    flatten([[fibonacci(k+1)*fibonacci(n-k+1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 06 2022

Formula

Row n: F(1)*F(n), F(2)*F(n-1), ..., F(n)*F(1).
G.f.: T(x,y) = 1/((1-x-x^2)(1-xy-x^2y^2)). Recurrence: T(n+4,k+2) = T(n+3,k+2) + T(n+3,k+1) + T(n+2,k+2) - T(n+2,k+1) + T(n+2,k) - T(n+1,k+1) - T(n+1,k) - T(n,k). - Emanuele Munarini, Apr 01 2008
T(n,k) = A104763(n+1,k+1) * A104763(n+1,n+1-k). - Reinhard Zumkeller, Aug 15 2013
Column k is the (generalized) Fibonacci sequence having first two terms F(k+1), F(k+1). - Clark Kimberling, Dec 21 2015
From G. C. Greubel, Apr 06 2022: (Start)
T(n,k) = Fibonacci(k+1)*Fibonacci(n-k+1).
Sum_{k=0..n} T(n, k) = A001629(n+2).
Sum_{k=0..floor(n/2)} T(n, k) = A024458(n+1).
Sum_{k=1..n-1} T(n, k) = A004798(n-1), n >= 2.
Sum_{k=0..floor(n/2)} T(n-k, k) = A250111(n+2).
T(n, 0) = A000045(n+1).
T(2*n, n) = A007598(n+1).
T(2*n+1, n) = A001654(n+1).
T(n, n-k) = T(n, k). (End)

Extensions

More terms from James Sellers, Nov 27 2000
Edited by N. J. A. Sloane, Sep 15 2008 at the suggestion of R. J. Mathar
Name edited by G. C. Greubel, Apr 06 2022

A143211 Triangle read by rows, T(n,k) = Fibonacci(n)*Fibonacci(k).

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 3, 3, 6, 9, 5, 5, 10, 15, 25, 8, 8, 16, 24, 40, 64, 13, 13, 26, 39, 65, 104, 169, 21, 21, 42, 63, 105, 168, 273, 441, 34, 34, 68, 102, 170, 272, 442, 714, 1156, 55, 55, 110, 165, 275, 440, 715, 1155, 1870, 3025, 89, 89, 178, 267, 445, 712, 1157, 1869
Offset: 1

Views

Author

Gary W. Adamson, Jul 30 2008

Keywords

Examples

			First few rows of the triangle:
   1;
   1,  1;
   2,  2,  4;
   3,  3,  6,  9;
   5,  5, 10, 15,  25;
   8,  8, 16, 24,  40,  64;
  13, 13, 26, 39,  65, 104, 169;
  21, 21, 42, 63, 105, 168, 273, 441;
  ...
		

Crossrefs

Cf. A000045 (left border), A007598 (right border), A127647,
Cf. A024458 (diagonal row sums), A143212 (row sums).

Programs

  • Magma
    F:=Fibonacci; [F(n)*F(k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 20 2024
    
  • Mathematica
    With[{F=Fibonacci}, Table[F[k]*F[n], {n,12}, {k,n}]]//Flatten (* G. C. Greubel, Jul 20 2024 *)
  • SageMath
    def A143211(n,k): return fibonacci(n)*fibonacci(k)
    flatten([[A143211(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Jul 20 2024

Formula

T(n, k) = Fibonacci(n)*Fibonacci(k).
T(n, k) = A127647 * A000012 * A127647, as infinite lower triangular matrices.
T(n, 1) = A000045(n).
T(n, n) = A007598(n).
Sum_{k=1..n} T(n, k) = A143212(n).
From G. C. Greubel, Jul 20 2024: (Start)
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n-1)*Fibonacci(n)*(Fibonacci(n-1) - (-1)^n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A024458(n). (End)

A027991 a(n) = Sum{T(n,k)*T(n,2n-k)}, 0<=k<=n-1, T given by A027926.

Original entry on oeis.org

1, 3, 12, 40, 130, 404, 1227, 3653, 10720, 31090, 89316, 254568, 720757, 2029095, 5684340, 15855964, 44061862, 122032508, 336966015, 927953705, 2549229256, 6987648358, 19115124552, 52194037200, 142274514025, 387215773899
Offset: 1

Views

Author

Keywords

Comments

From Wolfdieter Lang, Jan 02 2012: (Start)
a(n) = A024458(2*n-1), n>=1 (bisection, odd arguments).
chate(n):=a(n+1), n>=0, is the even part of the bisection of the half-convolution of the sequence A000045(n+1), n>=0, with itself. See a comment on A201204 for the definition of half-convolution. There one finds also the rule for the o.g.f.s of the bisection. Here the o.g.f. of the sequence chate(n), n>=0, is Chate(x):= (Ce(x)+U2(x))/2 with Ce(x)=(1-x+x^2)/(1-3*x+x^2)^2, the o.g.f. of A054444(n), and
U2(x)=(1-x)/((1+x)*(1-3*x+x^2)), the o.g.f. of A007598(n+1), n>=0. This results (after multiplying with x) in the o.g.f. given below in the formula section. It is equivalent to the explicit formula given there, as can be seen after a partial fraction decomposition of the o.g.f.
(End)

Crossrefs

Formula

a(n) = (1/5)[n*F(2n+2) - n*F(2n-2) + F(2n-1) - (-1)^n], F(n)=A000045(n).
O.g.f.: x*(1-2*x+2*x^2)/((1-3*x+x^2)^2*(1+x)). See the comment above. - Wolfdieter Lang, Jan 02 2012
Showing 1-4 of 4 results.