cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A061182 Third column (m=2) of triangle A060921 (bisection of Fibonacci triangle, odd part).

Original entry on oeis.org

3, 22, 111, 474, 1836, 6666, 23109, 77378, 252177, 804228, 2519640, 7777860, 23709783, 71501422, 213619683, 633011454, 1862264196, 5443487406, 15820188729, 45739697306, 131624104677, 377157259848
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Numerator polynomial is sum(A061177(2,m)*x^m,m=0..2).

Crossrefs

Formula

a(n)= A060921(n+2, 2).
G.f.: (3*(1+x^2)-5*x)/(1-3*x+x^2)^3.

A061183 One-fourth of the fourth (m=3) column of triangle A060921 (bisection of Fibonacci triangle, odd part).

Original entry on oeis.org

1, 10, 64, 331, 1505, 6272, 24540, 91527, 328768, 1145650, 3893630, 12958400, 42364427, 136389128, 433263360, 1360269093, 4226523495, 13011186624, 39722775806, 120366164765, 362255552384, 1083513943700
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Numerator polynomial of g.f. is (1/4) * Sum_{m=0..3} A061177(3,m)*x^m.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[((1-x^3)-2(x-x^2))/(1-3x+x^2)^4,{x,0,30}],x] (* or *) LinearRecurrence[{12,-58,144,-195,144,-58,12,-1},{1,10,64,331,1505,6272,24540,91527},30] (* Harvey P. Dale, Jun 17 2022 *)

Formula

a(n) = A060921(n+3, 3)/4.
G.f.: ((1-x^3)-2*(x-x^2))/(1-3*x+x^2)^4.

A061184 Fifth (m=4) column of triangle A060921 (bisection of Fibonacci triangle, odd part).

Original entry on oeis.org

5, 65, 511, 3130, 16435, 77645, 339535, 1399478, 5504650, 20845300, 76495450, 273381350, 955187033, 3272875935, 11024814945, 36584603310, 119796766005, 387639512331, 1240994295715, 3934750789180
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Numerator polynomial of g.f. is sum(A061177(4,m)*x^m,m=0..4).

Crossrefs

Formula

a(n)= A060921(n+4, 4).
G.f.: (5*(1+x^4)-10*(x+x^3)+11*x^2)/(1-3*x+x^2)^5.

A061185 One half of sixth (m=5) column of triangle A060921 (bisection of Fibonacci triangle, odd part).

Original entry on oeis.org

3, 49, 462, 3294, 19715, 104517, 506646, 2292310, 9817920, 40210800, 158677370, 606790410, 2258770689, 8214432303, 29269938510, 102434633406, 352793077413, 1197764971911, 4014411070092
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Numerator polynomial of g.f. is sum(A061177(5,m)*x^m,m=0..5)/2.

Crossrefs

Formula

a(n)= A060921(n+5, 5)/2.
G.f.: (3*(1-x^5)-5*(x-x^4)+3*(x^2-x^3))/(1-3*x+x^2)^6.

A001906 F(2n) = bisection of Fibonacci sequence: a(n) = 3*a(n-1) - a(n-2).

Original entry on oeis.org

0, 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, 17711, 46368, 121393, 317811, 832040, 2178309, 5702887, 14930352, 39088169, 102334155, 267914296, 701408733, 1836311903, 4807526976, 12586269025, 32951280099, 86267571272, 225851433717, 591286729879, 1548008755920
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term, same as A088305.
Second column of array A102310 and of A028412.
Numbers k such that 5*k^2 + 4 is a square. - Gregory V. Richardson, Oct 13 2002
Apart from initial terms, also Pisot sequences E(3,8), P(3,8), T(3,8). See A008776 for definitions of Pisot sequences.
Binomial transform of A000045. - Paul Barry, Apr 11 2003
Number of walks of length 2n+1 in the path graph P_4 from one end to the other one. Example: a(2)=3 because in the path ABCD we have ABABCD, ABCBCD and ABCDCD. - Emeric Deutsch, Apr 02 2004
Simplest example of a second-order recurrence with the sixth term a square.
Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 1, s(2n) = 3. - Lekraj Beedassy, Jun 11 2004
a(n) (for n > 0) is the smallest positive integer that cannot be created by summing at most n values chosen among the previous terms (with repeats allowed). - Andrew Weimholt, Jul 20 2004
All nonnegative integer solutions of Pell equation b(n)^2 - 5*a(n)^2 = +4 together with b(n) = A005248(n), n >= 0. - Wolfdieter Lang, Aug 31 2004
a(n+1) is a Chebyshev transform of 3^n (A000244), where the sequence with g.f. G(x) is sent to the sequence with g.f. (1/(1+x^2))G(x/(1+x^2)). - Paul Barry, Oct 25 2004
a(n) is the number of distinct products of matrices A, B, C, in (A+B+C)^n where commutator [A,B] = 0 but C does not commute with A or B. - Paul D. Hanna and Max Alekseyev, Feb 01 2006
Number of binary words with exactly k-1 strictly increasing runs. Example: a(3)=F(6)=8 because we have 0|0,1|0,1|1,0|01,01|0,1|01,01|1 and 01|01. Column sums of A119900. - Emeric Deutsch, Jul 23 2006
See Table 1 on page 411 of Lukovits and Janezic paper. - Parthasarathy Nambi, Aug 22 2006
Inverse: With phi = (sqrt(5) + 1)/2, log_phi((sqrt(5) a(n) + sqrt(5 a(n)^2 + 4))/2) = n. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 19 2007
[1,3,8,21,55,144,...] is the Hankel transform of [1,1,4,17,75,339,1558,...](see A026378). - Philippe Deléham, Apr 13 2007
The Diophantine equation a(n) = m has a solution (for m >= 1) if and only if floor(arcsinh(sqrt(5)*m/2)/log(phi)) <> floor(arccosh(sqrt(5)*m/2)/log(phi)) where phi is the golden ratio. An equivalent condition is A130259(m) = A130260(m). - Hieronymus Fischer, May 25 2007
a(n+1) = AB^(n)(1), n >= 0, with compositions of Wythoff's complementary A(n):=A000201(n) and B(n)=A001950(n) sequences. See the W. Lang link under A135817 for the Wythoff representation of numbers (with A as 1 and B as 0 and the argument 1 omitted). E.g., 1=`1`, 3=`10`, 8=`100`, 21=`1000`, ..., in Wythoff code.
Equals row sums of triangles A140069, A140736 and A140737. - Gary W. Adamson, May 25 2008
a(n) is also the number of idempotent order-preserving partial transformations (of an n-element chain) of width n (width(alpha) = max(Im(alpha))). Equivalently, it is the number of idempotent order-preserving full transformations (of an n-element chain). - Abdullahi Umar, Sep 08 2008
a(n) is the number of ways that a string of 0,1 and 2 of size (n-1) can be arranged with no 12-pairs. - Udita Katugampola, Sep 24 2008
Starting with offset 1 = row sums of triangle A175011. - Gary W. Adamson, Apr 03 2010
As a fraction: 1/71 = 0.01408450... or 1/9701 = 0.0001030821.... - Mark Dols, May 18 2010
Sum of the products of the elements in the compositions of n (example for n=3: the compositions are 1+1+1, 1+2, 2+1, and 3; a(3) = 1*1*1 + 1*2 + 2*1 + 3 = 8). - Dylon Hamilton, Jun 20 2010, Geoffrey Critzer, Joerg Arndt, Dec 06 2010
a(n) relates to regular polygons with even numbers of edges such that Product_{k=1..(n-2)/2} (1 + 4*cos^2 k*Pi/n) = even-indexed Fibonacci numbers with a(n) relating to the 2*n-gons. The constants as products = roots to even-indexed rows of triangle A152063. For example: a(5) = 55 satisfies the product formula relating to the 10-gon. - Gary W. Adamson, Aug 15 2010
Alternatively, product of roots to x^4 - 12x^3 + 51x^2 - 90x + 55, (10th row of triangle A152063) = (4.618...)*(3.618...)*(2.381...)*(1.381...) = 55. - Gary W. Adamson, Aug 15 2010
a(n) is the number of generalized compositions of n when there are i different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010
Starting with "1" = row sums of triangle A180339, and eigensequence of triangle A137710. - Gary W. Adamson, Aug 28 2010
a(2) = 3 is the only prime.
Number of nonisomorphic graded posets with 0 and uniform hasse graph of rank n > 0, with exactly 2 elements of each rank level above 0. (Uniform used in the sense of Retakh, Serconek, and Wilson. Graded used in Stanley's sense that every maximal chain has the same length n.) - David Nacin, Feb 13 2012
Pisano period lengths: 1, 3, 4, 3, 10, 12, 8, 6, 12, 30, 5, 12, 14, 24, 20, 12, 18, 12, 9, 30, ... - R. J. Mathar, Aug 10 2012
Solutions (x, y) = (a(n), a(n+1)) satisfying x^2 + y^2 = 3xy + 1. - Michel Lagneau, Feb 01 2014
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,2}. - Milan Janjic, Jan 25 2015
With a(0) = 0, for n > 1, a(n) is the smallest number not already in the sequence such that a(n)^2 - a(n-1)^2 is a Fibonacci number. - Derek Orr, Jun 08 2015
Let T be the tree generated by these rules: 0 is in T, and if p is in T, then p + 1 is in T and x*p is in T and y*p is in T. The n-th generation of T consists of A001906(n) polynomials, for n >= 0. - Clark Kimberling, Nov 24 2015
For n > 0, a(n) = exactly the maximum area of a quadrilateral with sides in order of lengths F(n), F(n), L(n), and L(n) with L(n)=A000032(n). - J. M. Bergot, Jan 20 2016
a(n) = twice the area of a triangle with vertices at (L(n+1), L(n+2)), (F(n+1), F(n+1)), and (L(n+2), L(n+1)), with L(n)=A000032(n). - J. M. Bergot, Apr 20 2016
Except for the initial 0, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = 1 - S - S^2; see A291000. - Clark Kimberling, Aug 24 2017
a(n+1) is the number of spanning trees of the graph T_n, where T_n is a sequence of n triangles, where adjacent triangles share an edge. - Kevin Long, May 07 2018
a(n) is the number of ways to partition [n] such that each block is a run of consecutive numbers, and each block has a fixed point, e.g., for n=3, 12|3 with 1 and 3 as fixed points is valid, but 13|2 is not valid as 1 and 3 do not form a run. Consequently, a(n) also counts the spanning trees of the graph given by taking a path with n vertices and adding another vertex adjacent to all of them. - Kevin Long, May 11 2018
From Wolfdieter Lang, May 31 2018: (Start)
The preceding comment can be paraphrased as follows. a(n) is the row sum of the array A305309 for n >= 1. The array A305309(n, k) gives the sum of the products of the block lengths of the set partition of [n] := {1, 2, ..., n} with A048996(n, k) blocks of consecutive numbers, corresponding to the compositions obtained from the k-th partition of n in Abramowitz-Stegun order. See the comments and examples at A305309.
{a(n)} also gives the infinite sequence of nonnegative numbers k for which k * ||k*phi|| < 1/sqrt(5), where the irrational number phi = A001622 (golden section), and ||x|| is the absolute value of the difference between x and the nearest integer. See, e.g., the Havil reference, pp. 171-172. (End)
a(n) is the number of tilings of two n X 1 rectangles joined orthogonally at a common end-square (so to have 2n-1 squares in a right-angle V shape) with only 1 X 1 and 2 X 1 tiles. This is a consequence of F(2n) = F(n+1)*F(n) + F(n)*F(n-1). - Nathaniel Gregg, Oct 10 2021
These are the denominators of the upper convergents to the golden ratio, tau; they are also the numerators of the lower convergents (viz. 1/1 < 3/2 < 8/5 < 21/13 < ... < tau < ... 13/8 < 5/3 < 2/1). - Clark Kimberling, Jan 02 2022
For n > 1, a(n) is the smallest Fibonacci number of unit equilateral triangle tiles needed to make an isosceles trapezoid of height F(n) triangles. - Kiran Ananthpur Bacche, Sep 01 2024

Examples

			G.f. = x + 3*x^2 + 8*x^3 + 21*x^4 + 55*x^5 + 144*x^6 + 377*x^7 + 987*x^8 + ...
a(3) = 8 because there are exactly 8 idempotent order-preserving full transformations on a 3-element chain, namely: (1,2,3)->(1,1,1),(1,2,3)->(2,2,2),(1,2,3)->(3,3,3),(1,2,3)->(1,1,3),(1,2,3)->(2,2,3),(1,2,3)->(1,2,2),(1,2,3)->(1,3,3),(1,2,3)->(1,2,3)-mappings are coordinate-wise. - _Abdullahi Umar_, Sep 08 2008
		

References

  • Mohammad K. Azarian, The Generating Function for the Fibonacci Sequence, Missouri Journal of Mathematical Sciences, Vol. 2, No. 2, Spring 1990, pp. 78-79. Zentralblatt MATH, Zbl 1097.11516.
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 2,5,6,14,33,55.
  • R. J. Douglas, Tournaments that admit exactly one Hamiltonian cycle, Proc. London Math. Soc., 21 (1970), 716-730.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • A. Gerardin, Reply to Query 4389, L'Intermédiaire des Mathématiciens, 22 (1915), 23.
  • Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 171-172.
  • Howie, J. M. Combinatorial and probabilistic results in transformation semigroups. Words, languages and combinatorics, II (Kyoto, 1992), 200--206, World Sci. Publ., River Edge, NJ, (1994).
  • Laradji, A. and Umar, A. Combinatorial results for semigroups of order-preserving full transformations. Semigroup Forum 72 (2006), 51-62.
  • I. Lukovits, A. Graovac, E. Kalman, G. Kaptay, P. Nagy, S. Nikolic, J. Sytchev and N. Trinajstich, "Nanotubes: Number of Kekulé Structures and Aromaticity", J. Chem. Inf. Comput. Sci, vol. 43 (2003), pp. 609-614. See Equation 6 on page 611.
  • T. Mansour, M. Shattuck, A statistic on n-color compositions and related sequences, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 124, No. 2, May 2014, pp. 127-140.
  • H. Mathieu, Query 3932, L'Intermédiaire des Mathématiciens, 18 (1911), 222. - N. J. A. Sloane, Mar 08 2022
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 101.
  • Paulo Ribenboim, Primes in Lucas sequences (Chap 4), in 'My Numbers, My Friends', Springer-Verlag 2000 NY, page 27.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

Fibonacci A000045 = union of this sequence and A001519.
Inverse sequences A130259 and A130260.

Programs

  • Haskell
    a001906 n = a001906_list !! n
    a001906_list =
       0 : 1 : zipWith (-) (map (* 3) $ tail a001906_list) a001906_list
    -- Reinhard Zumkeller, Oct 03 2011
    
  • Magma
    [Fibonacci(2*n): n in [0..30]]; // Vincenzo Librandi, Sep 10 2014
  • Maple
    with(combstruct): SeqSeqSeqL := [T, {T=Sequence(S, card > 0), S=Sequence(U, card > 1), U=Sequence(Z, card >0)}, unlabeled]: seq(count(SeqSeqSeqL, size=n+1), n=0..28); # Zerinvary Lajos, Apr 04 2009
    H := (n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -4):
    a := n -> `if`(n = 0, 0, H(2*n, 1, 1/2)):
    seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 03 2019
    A001906 := proc(n)
        combinat[fibonacci](2*n) ;
    end proc:
    seq(A001906(n),n=0..20) ; # R. J. Mathar, Jan 11 2024
  • Mathematica
    f[n_] := Fibonacci[2n]; Array[f, 28, 0] (* or *)
    LinearRecurrence[{3, -1}, {0, 1}, 28] (* Robert G. Wilson v, Jul 13 2011 *)
    Take[Fibonacci[Range[0,60]],{1,-1,2}] (* Harvey P. Dale, May 23 2012 *)
    Table[ ChebyshevU[n-1, 3/2], {n, 0, 30}] (* Jean-François Alcover, Jan 25 2013, after Michael Somos *)
    CoefficientList[Series[(x)/(1 - 3x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 10 2014 *)
  • Maxima
    makelist(fib(2*n),n,0,30); /* Martin Ettl, Oct 21 2012 */
    
  • MuPAD
    numlib::fibonacci(2*n) $ n = 0..35; // Zerinvary Lajos, May 09 2008
    
  • PARI
    {a(n) = fibonacci(2*n)}; /* Michael Somos, Dec 06 2002 */
    
  • PARI
    {a(n) = subst( poltchebi(n+1)*4 - poltchebi(n)*6, x, 3/2)/5}; /* Michael Somos, Dec 06 2002 */
    
  • PARI
    {a(n) = polchebyshev( n-1, 2, 3/2)}; /* Michael Somos Jun 18 2011 */
    
  • PARI
    Vec(x/(1-3*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Oct 24 2012
    
  • Python
    def a(n, adict={0:0, 1:1}):
        if n in adict:
            return adict[n]
        adict[n]=3*a(n-1) - a(n-2)
        return adict[n] # David Nacin, Mar 04 2012
    
  • Sage
    [lucas_number1(n,3,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [fibonacci(2*n) for n in range(0, 28)] # Zerinvary Lajos, May 15 2009
    

Formula

G.f.: x / (1 - 3*x + x^2). - Simon Plouffe in his 1992 dissertation
a(n) = 3*a(n-1) - a(n-2) = A000045(2*n).
a(n) = -a(-n).
a(n) = A060921(n-1, 0), n >= 1.
a(n) = sqrt((A005248(n)^2 - 4)/5).
a(n) = A007598(n) - A007598(n-2), n > 1.
a(n) = (ap^n - am^n)/(ap-am), with ap := (3+sqrt(5))/2, am := (3-sqrt(5))/2.
Invert transform of natural numbers: a(n) = Sum_{k=1..n} k*a(n-k), a(0) = 1. - Vladeta Jovovic, Apr 27 2001
a(n) = S(n-1, 3) with S(n, x) = U(n, x/2) Chebyshev's polynomials of the 2nd kind, see A049310.
a(n) = Sum_{k=0..n} binomial(n, k)*F(k). - Benoit Cloitre, Sep 03 2002
Limit_{n->infinity} a(n)/a(n-1) = 1 + phi = (3 + sqrt(5))/2. This sequence includes all of the elements of A033888 combined with A033890.
a(0)=0, a(1)=1, a(2)=3, a(n)*a(n-2) + 1 = a(n-1)^2. - Benoit Cloitre, Dec 06 2002
a(n) = n + Sum_{k=0..n-1} Sum_{i=0..k} a(i) = n + A054452(n). - Benoit Cloitre, Jan 26 2003
a(n) = Sum_{k=1..n} binomial(n+k-1, n-k). - Vladeta Jovovic, Mar 23 2003
E.g.f.: (2/sqrt(5))*exp(3*x/2)*sinh(sqrt(5)*x/2). - Paul Barry, Apr 11 2003
Second diagonal of array defined by T(i, 1) = T(1, j) = 1, T(i, j) = Max(T(i-1, j) + T(i-1, j-1); T(i-1, j-1) + T(i, j-1)). - Benoit Cloitre, Aug 05 2003
a(n) = F(n)*L(n) = A000045(n)*A000032(n). - Lekraj Beedassy, Nov 17 2003
F(2n+2) = 1, 3, 8, ... is the binomial transform of F(n+2). - Paul Barry, Apr 24 2004
Partial sums of A001519(n). - Lekraj Beedassy, Jun 11 2004
a(n) = Sum_{i=0..n-1} binomial(2*n-1-i, i)*5^(n-i-1)*(-1)^i. - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
a(n) = Sum_{k=0..n} binomial(n+k, n-k-1) = Sum_{k=0..n} binomial(n+k, 2k+1).
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*3^(n-2*k). - Paul Barry, Oct 25 2004
a(n) = (n*L(n) - F(n))/5 = Sum_{k=0..n-1} (-1)^n*L(2*n-2*k-1).
The i-th term of the sequence is the entry (1, 2) in the i-th power of the 2 X 2 matrix M = ((1, 1), (1, 2)). - Simone Severini, Oct 15 2005
Computation suggests that this sequence is the Hankel transform of A005807. The Hankel transform of {a(n)} is Det[{{a(1), ..., a(n)}, {a(2), ..., a(n+1)}, ..., {a(n), ..., a(2n-1)}}]. - John W. Layman, Jul 21 2000
a(n+1) = (A005248(n+1) - A001519(n))/2. - Creighton Dement, Aug 15 2004
a(n+1) = Sum_{i=0..n} Sum_{j=0..n} binomial(n-i, j)*binomial(n-j, i). - N. J. A. Sloane, Feb 20 2005
a(n) = (2/sqrt(5))*sinh(2*n*psi), where psi:=log(phi) and phi=(1+sqrt(5))/2. - Hieronymus Fischer, Apr 24 2007
a(n) = ((phi+1)^n - A001519(n))/phi with phi=(1+sqrt(5))/2. - Reinhard Zumkeller, Nov 22 2007
Row sums of triangle A135871. - Gary W. Adamson, Dec 02 2007
a(n)^2 = Sum_{k=1..n} a(2*k-1). This is a property of any sequence S(n) such that S(n) = B*S(n-1) - S(n-2) with S(0) = 0 and S(1) = 1 including {0,1,2,3,...} where B = 2. - Kenneth J Ramsey, Mar 23 2008
a(n) = 1/sqrt(5)*(phi^(2*n+2) - phi^(-2*n-2)), where phi = (1+sqrt(5))/2, the golden ratio. - Udita Katugampola (SIU), Sep 24 2008
If p[i] = i and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i<=j), A[i,j] = -1, (i = j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n) = det(A). - Milan Janjic, May 02 2010
If p[i] = Stirling2(i,2) and if A is the Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i<=j), A[i,j] = -1, (i = j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n-1) = det(A). - Milan Janjic, May 08 2010
a(n) = F(2*n+10) mod F(2*n+5).
a(n) = 1 + a(n-1) + Sum_{i=1..n-1} a(i), with a(0)=0. - Gary W. Adamson, Feb 19 2011
a(n) is equal to the permanent of the (n-1) X (n-1) Hessenberg matrix with 3's along the main diagonal, i's along the superdiagonal and the subdiagonal (i is the imaginary unit), and 0's everywhere else. - John M. Campbell, Jun 09 2011
a(n), n > 1 is equal to the determinant of an (n-x) X (n-1) tridiagonal matrix with 3's in the main diagonal, 1's in the super and subdiagonals, and the rest 0's. - Gary W. Adamson, Jun 27 2011
a(n) = b such that Integral_{x=0..Pi/2} sin(n*x)/(3/2-cos(x)) dx = c + b*log(3). - Francesco Daddi, Aug 01 2011
a(n+1) = Sum_{k=0..n} A101950(n,k)*2^k. - Philippe Deléham, Feb 10 2012
G.f.: A(x) = x/(1-3*x+x^2) = G(0)/sqrt(5); where G(k)= 1 -(a^k)/(1 - b*x/(b*x - 2*(a^k)/G(k+1))), a = (7-3*sqrt(5))/2, b = 3+sqrt(5), if |x|<(3-sqrt(5))/2 = 0.3819660...; (continued fraction 3 kind, 3-step ). - Sergei N. Gladkovskii, Jun 25 2012
a(n) = 2^n*b(n;1/2) = -b(n;-1), where b(n;d), n=0,1,...,d, denote the delta-Fibonacci numbers defined in comments to A000045 (see also Witula's et al. papers). - Roman Witula, Jul 12 2012
Product_{n>=1} (1 + 1/a(n)) = 1 + sqrt(5). - Peter Bala, Dec 23 2012
Product_{n>=2} (1 - 1/a(n)) = (1/6)*(1 + sqrt(5)). - Peter Bala, Dec 23 2012
G.f.: x/(1-2*x) + x^2/(1-2*x)/(Q(0)-x) where Q(k) = 1 - x/(x*k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Feb 23 2013
G.f.: G(0)/2 - 1, where G(k) = 1 + 1/( 1 - x/(x + (1-x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: x*G(0)/(2-3*x), where G(k) = 1 + 1/( 1 - x*(5*k-9)/(x*(5*k-4) - 6/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
Sum_{n>=1} 1/(a(n) + 1/a(n)) = 1. Compare with A001519, A049660 and A049670. - Peter Bala, Nov 29 2013
a(n) = U(n-1,3/2) where U(n-1,x) is Chebyshev polynomial of the second kind. - Milan Janjic, Jan 25 2015
The o.g.f. A(x) satisfies A(x) + A(-x) + 6*A(x)*A(-x) = 0. The o.g.f. for A004187 equals -A(sqrt(x))*A(-sqrt(x)). - Peter Bala, Apr 02 2015
For n > 1, a(n) = (3*F(n+1)^2 + 2*F(n-2)*F(n+1) - F(n-2)^2)/4. - J. M. Bergot, Feb 16 2016
For n > 3, a(n) = floor(MA) - 4 for n even and floor(MA) + 5 for n odd. MA is the maximum area of a quadrilateral with lengths of sides in order L(n), L(n), F(n-3), F(n+3), with L(n)=A000032(n). The ratio of the longer diagonal to the shorter approaches 5/3. - J. M. Bergot, Feb 16 2016
a(n+1) = Sum_{j=0..n} Sum_{k=0..j} binomial(n-j,k)*binomial(j,k)*2^(j-k). - Tony Foster III, Sep 18 2017
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} C(k+i,k-i). - Wesley Ivan Hurt, Sep 21 2017
a(n) = Sum_{k=1..A000041(n)} A305309(n, k), n >= 1. Also row sums of triangle A078812.- Wolfdieter Lang, May 31 2018
a(n) = H(2*n, 1, 1/2) for n > 0 where H(n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -4). - Peter Luschny, Sep 03 2019
Sum_{n>=1} 1/a(n) = A153386. - Amiram Eldar, Oct 04 2020
a(n) = A249450(n) + 2. - Leo Tavares, Oct 10 2021
a(n) = -2/(sqrt(5)*tan(2*arctan(phi^(2*n)))), where phi = A001622 is the golden ratio. - Diego Rattaggi, Nov 21 2021
a(n) = sinh(2*n*arcsinh(1/2))/sqrt(5/4). - Peter Luschny, May 21 2022
From Amiram Eldar, Dec 02 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 1 + 1/sqrt(5) (A344212).
Product_{n>=2} (1 + (-1)^n/a(n)) = (5/6) * (1 + 1/sqrt(5)). (End)
a(n) = Sum_{k>=0} Fibonacci(2*n*k)/(Lucas(2*n)^(k+1)). - Diego Rattaggi, Jan 12 2025
Sum_{n>=0} a(n)/3^n = 3. - Diego Rattaggi, Jan 20 2025

A002450 a(n) = (4^n - 1)/3.

Original entry on oeis.org

0, 1, 5, 21, 85, 341, 1365, 5461, 21845, 87381, 349525, 1398101, 5592405, 22369621, 89478485, 357913941, 1431655765, 5726623061, 22906492245, 91625968981, 366503875925, 1466015503701, 5864062014805, 23456248059221, 93824992236885, 375299968947541
Offset: 0

Views

Author

Keywords

Comments

For n > 0, a(n) is the degree (n-1) "numbral" power of 5 (see A048888 for the definition of numbral arithmetic). Example: a(3) = 21, since the numbral square of 5 is 5(*)5 = 101(*)101(base 2) = 101 OR 10100 = 10101(base 2) = 21, where the OR is taken bitwise. - John W. Layman, Dec 18 2001
a(n) is composite for all n > 2 and has factors x, (3*x + 2*(-1)^n) where x belongs to A001045. In binary the terms greater than 0 are 1, 101, 10101, 1010101, etc. - John McNamara, Jan 16 2002
Number of n X 2 binary arrays with path of adjacent 1's from upper left corner to right column. - R. H. Hardin, Mar 16 2002
The Collatz-function iteration started at a(n), for n >= 1, will end at 1 after 2*n+1 steps. - Labos Elemer, Sep 30 2002 [corrected by Wolfdieter Lang, Aug 16 2021]
Second binomial transform of A001045. - Paul Barry, Mar 28 2003
All members of sequence are also generalized octagonal numbers (A001082). - Matthew Vandermast, Apr 10 2003
Also sum of squares of divisors of 2^(n-1): a(n) = A001157(A000079(n-1)), for n > 0. - Paul Barry, Apr 11 2003
Binomial transform of A000244 (with leading zero). - Paul Barry, Apr 11 2003
Number of walks of length 2n between two vertices at distance 2 in the cycle graph C_6. For n = 2 we have for example 5 walks of length 4 from vertex A to C: ABABC, ABCBC, ABCDC, AFABC and AFEDC. - Herbert Kociemba, May 31 2004
Also number of walks of length 2n + 1 between two vertices at distance 3 in the cycle graph C_12. - Herbert Kociemba, Jul 05 2004
a(n+1) is the number of steps that are made when generating all n-step random walks that begin in a given point P on a two-dimensional square lattice. To make one step means to mark one vertex on the lattice (compare A080674). - Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Mar 13 2005
a(n+1) is the sum of square divisors of 4^n. - Paul Barry, Oct 13 2005
a(n+1) is the decimal number generated by the binary bits in the n-th generation of the Rule 250 elementary cellular automaton. - Eric W. Weisstein, Apr 08 2006
a(n-1) / a(n) = percentage of wasted storage if a single image is stored as a pyramid with a each subsequent higher resolution layer containing four times as many pixels as the previous layer. n is the number of layers. - Victor Brodsky (victorbrodsky(AT)gmail.com), Jun 15 2006
k is in the sequence if and only if C(4k + 1, k) (A052203) is odd. - Paul Barry, Mar 26 2007
This sequence also gives the number of distinct 3-colorings of the odd cycle C(2*n - 1). - Keith Briggs, Jun 19 2007
All numbers of the form m*4^m + (4^m-1)/3 have the property that they are sums of two squares and also their indices are the sum of two squares. This follows from the identity m*4^m + (4^m-1)/3 = 4(4(..4(4m + 1) + 1) + 1) + 1 ..) + 1. - Artur Jasinski, Nov 12 2007
For n > 0, terms are the numbers that, in base 4, are repunits: 1_4, 11_4, 111_4, 1111_4, etc. - Artur Jasinski, Sep 30 2008
Let A be the Hessenberg matrix of order n, defined by: A[1, j] = 1, A[i, i] := 5, (i > 1), A[i, i - 1] = -1, and A[i, j] = 0 otherwise. Then, for n >= 1, a(n) = charpoly(A,1). - Milan Janjic, Jan 27 2010
This is the sequence A(0, 1; 3, 4; 2) = A(0, 1; 4, 0; 1) of the family of sequences [a, b : c, d : k] considered by G. Detlefs, and treated as A(a, b; c, d; k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
6*a(n) + 1 is every second Mersenne number greater than or equal to M3, hence all Mersenne primes greater than M2 must be a 6*a(n) + 1 of this sequence. - Roderick MacPhee, Nov 01 2010
Smallest number having alternating bit sum n. Cf. A065359.
For n = 1, 2, ..., the last digit of a(n) is 1, 5, 1, 5, ... . - Washington Bomfim, Jan 21 2011
Rule 50 elementary cellular automaton generates this sequence. This sequence also appears in the second column of array in A173588. - Paul Muljadi, Jan 27 2011
Sequence found by reading the line from 0, in the direction 0, 5, ... and the line from 1, in the direction 1, 21, ..., in the square spiral whose edges are the Jacobsthal numbers A001045 and whose vertices are the numbers A000975. These parallel lines are two semi-diagonals in the spiral. - Omar E. Pol, Sep 10 2011
a(n), n >= 1, is also the inverse of 3, denoted by 3^(-1), Modd(2^(2*n - 1)). For Modd n see a comment on A203571. E.g., a(2) = 5, 3 * 5 = 15 == 1 (Modd 8), because floor(15/8) = 1 is odd and -15 == 1 (mod 8). For n = 1 note that 3 * 1 = 3 == 1 (Modd 2) because floor(3/2) = 1 and -3 == 1 (mod 2). The inverse of 3 taken Modd 2^(2*n) coincides with 3^(-1) (mod 2^(2*n)) given in A007583(n), n >= 1. - Wolfdieter Lang, Mar 12 2012
If an AVL tree has a leaf at depth n, then the tree can contain no more than a(n+1) nodes total. - Mike Rosulek, Nov 20 2012
Also, this is the Lucas sequence V(5, 4). - Bruno Berselli, Jan 10 2013
Also, for n > 0, a(n) is an odd number whose Collatz trajectory contains no odd number other than n and 1. - Jayanta Basu, Mar 24 2013
Sum_{n >= 1} 1/a(n) converges to (3*(log(4/3) - QPolyGamma[0, 1, 1/4]))/log(4) = 1.263293058100271... = A321873. - K. G. Stier, Jun 23 2014
Consider n spheres in R^n: the i-th one (i=1, ..., n) has radius r(i) = 2^(1-i) and the coordinates of its center are (0, 0, ..., 0, r(i), 0, ..., 0) where r(i) is in position i. The coordinates of the intersection point in the positive orthant of these spheres are (2/a(n), 4/a(n), 8/a(n), 16/a(n), ...). For example in R^2, circles centered at (1, 0) and (0, 1/2), and with radii 1 and 1/2, meet at (2/5, 4/5). - Jean M. Morales, May 19 2015
From Peter Bala, Oct 11 2015: (Start)
a(n) gives the values of m such that binomial(4*m + 1,m) is odd. Cf. A003714, A048716, A263132.
2*a(n) = A020988(n) gives the values of m such that binomial(4*m + 2, m) is odd.
4*a(n) = A080674(n) gives the values of m such that binomial(4*m + 4, m) is odd. (End)
Collatz Conjecture Corollary: Except for powers of 2, the Collatz iteration of any positive integer must eventually reach a(n) and hence terminate at 1. - Gregory L. Simay, May 09 2016
Number of active (ON, black) cells at stage 2^n - 1 of the two-dimensional cellular automaton defined by "Rule 598", based on the 5-celled von Neumann neighborhood. - Robert Price, May 16 2016
From Luca Mariot and Enrico Formenti, Sep 26 2016: (Start)
a(n) is also the number of coprime pairs of polynomials (f, g) over GF(2) where both f and g have degree n + 1 and nonzero constant term.
a(n) is also the number of pairs of one-dimensional binary cellular automata with linear and bipermutive local rule of neighborhood size n+1 giving rise to orthogonal Latin squares of order 2^m, where m is a multiple of n. (End)
Except for 0, 1 and 5, all terms are Brazilian repunits numbers in base 4, and so belong to A125134. For n >= 3, all these terms are composite because a(n) = {(2^n-1) * (2^n + 1)}/3 and either (2^n - 1) or (2^n + 1) is a multiple of 3. - Bernard Schott, Apr 29 2017
Given the 3 X 3 matrix A = [2, 1, 1; 1, 2, 1; 1, 1, 2] and the 3 X 3 unit matrix I_3, A^n = a(n)(A - I_3) + I_3. - Nicolas Patrois, Jul 05 2017
The binary expansion of a(n) (n >= 1) consists of n 1's alternating with n - 1 0's. Example: a(4) = 85 = 1010101_2. - Emeric Deutsch, Aug 30 2017
a(n) (n >= 1) is the viabin number of the integer partition [n, n - 1, n - 2, ..., 2, 1] (for the definition of viabin number see comment in A290253). Example: a(4) = 85 = 1010101_2; consequently, the southeast border of the Ferrers board of the corresponding integer partition is ENENENEN, where E = (1, 0), N = (0, 1); this leads to the integer partition [4, 3, 2, 1]. - Emeric Deutsch, Aug 30 2017
Numbers whose binary and Gray-code representations are both palindromes (i.e., intersection of A006995 and A281379). - Amiram Eldar, May 17 2021
Starting with n = 1 the sequence satisfies {a(n) mod 6} = repeat{1, 5, 3}. - Wolfdieter Lang, Jan 14 2022
Terms >= 5 are those q for which the multiplicative order of 2 mod q is floor(log_2(q)) + 2 (and which is 1 more than the smallest possible order for any q). - Tim Seuré, Mar 09 2024
The order of 2 modulo a(n) is 2*n for n >= 2. - Joerg Arndt, Mar 09 2024

Examples

			Apply Collatz iteration to 9: 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5 and hence 16, 8, 4, 2, 1.
Apply Collatz iteration to 27: 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5 and hence 16, 8, 4, 2, 1. [Corrected by _Sean A. Irvine_ at the suggestion of Stephen Cornelius, Mar 04 2024]
a(5) = (4^5 - 1)/3 = 341 = 11111_4 = {(2^5 - 1) * (2^5 + 1)}/3 = 31 * 33/3 = 31 * 11. - _Bernard Schott_, Apr 29 2017
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of powers of 4, A000302.
When converted to binary, this gives A094028.
Subsequence of A003714.
Primitive factors: A129735.

Programs

  • GAP
    List([0..25], n -> (4^n-1)/3); # Muniru A Asiru, Feb 18 2018
    
  • Haskell
    a002450 = (`div` 3) . a024036
    a002450_list = iterate ((+ 1) . (* 4)) 0
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Magma
    [ (4^n-1)/3: n in [0..25] ]; // Klaus Brockhaus, Oct 28 2008
    
  • Magma
    [n le 2 select n-1 else 5*Self(n-1)-4*Self(n-2): n in [1..70]]; // Vincenzo Librandi, Jun 13 2015
    
  • Maple
    [seq((4^n-1)/3,n=0..40)];
    A002450:=1/(4*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation, dropping the initial zero
  • Mathematica
    Table[(4^n - 1)/3, {n, 0, 127}] (* Vladimir Joseph Stephan Orlovsky, Sep 29 2008 *)
    LinearRecurrence[{5, -4}, {0, 1}, 30] (* Harvey P. Dale, Jun 23 2013 *)
  • Maxima
    makelist((4^n-1)/3, n, 0, 30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n) = (4^n-1)/3;
    
  • PARI
    my(z='z+O('z^40)); Vec(z/((1-z)*(1-4*z))) \\ Altug Alkan, Oct 11 2015
    
  • Python
    def A002450(n): return ((1<<(n<<1))-1)//3 # Chai Wah Wu, Jan 29 2023
  • Scala
    ((List.fill(20)(4: BigInt)).scanLeft(1: BigInt)( * )).scanLeft(0: BigInt)( + ) // Alonso del Arte, Sep 17 2019
    

Formula

From Wolfdieter Lang, Apr 24 2001: (Start)
a(n+1) = Sum_{m = 0..n} A060921(n, m).
G.f.: x/((1-x)*(1-4*x)). (End)
a(n) = Sum_{k = 0..n-1} 4^k; a(n) = A001045(2*n). - Paul Barry, Mar 17 2003
E.g.f.: (exp(4*x) - exp(x))/3. - Paul Barry, Mar 28 2003
a(n) = (A007583(n) - 1)/2. - N. J. A. Sloane, May 16 2003
a(n) = A000975(2*n)/2. - N. J. A. Sloane, Sep 13 2003
a(n) = A084160(n)/2. - N. J. A. Sloane, Sep 13 2003
a(n+1) = 4*a(n) + 1, with a(0) = 0. - Philippe Deléham, Feb 25 2004
a(n) = Sum_{i = 0..n-1} C(2*n - 1 - i, i)*2^i. - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
a(n+1) = Sum_{k = 0..n} binomial(n+1, k+1)*3^k. - Paul Barry, Aug 20 2004
a(n) = center term in M^n * [1 0 0], where M is the 3 X 3 matrix [1 1 1 / 1 3 1 / 1 1 1]. M^n * [1 0 0] = [A007583(n-1) a(n) A007583(n-1)]. E.g., a(4) = 85 since M^4 * [1 0 0] = [43 85 43] = [A007583(3) a(4) A007583(3)]. - Gary W. Adamson, Dec 18 2004
a(n) = Sum_{k = 0..n, j = 0..n} C(n, j)*C(j, k)*A001045(j - k). - Paul Barry, Feb 15 2005
a(n) = Sum_{k = 0..n} C(n, k)*A001045(n-k)*2^k = Sum_{k = 0..n} C(n, k)*A001045(k)*2^(n-k). - Paul Barry, Apr 22 2005
a(n) = A125118(n, 3) for n > 2. - Reinhard Zumkeller, Nov 21 2006
a(n) = Sum_{k = 0..n} 2^(n - k)*A128908(n, k), n >= 1. - Philippe Deléham, Oct 19 2008
a(n) = Sum_{k = 0..n} A106566(n, k)*A100335(k). - Philippe Deléham, Oct 30 2008
If we define f(m, j, x) = Sum_{k = j..m} binomial(m, k)*stirling2(k, j)*x^(m - k) then a(n-1) = f(2*n, 4, -2), n >= 2. - Milan Janjic, Apr 26 2009
a(n) = A014551(n) * A001045(n). - R. J. Mathar, Jul 08 2009
a(n) = 4*a(n-1) + a(n-2) - 4*a(n-3) = 5*a(n-1) - 4*a(n-2), a(0) = 0, a(1) = 1, a(2) = 5. - Wolfdieter Lang, Oct 18 2010
a(0) = 0, a(n+1) = a(n) + 2^(2*n). - Washington Bomfim, Jan 21 2011
A036555(a(n)) = 2*n. - Reinhard Zumkeller, Jan 28 2011
a(n) = Sum_{k = 1..floor((n+2)/3)} C(2*n + 1, n + 2 - 3*k). - Mircea Merca, Jun 25 2011
a(n) = Sum_{i = 1..n} binomial(2*n + 1, 2*i)/3. - Wesley Ivan Hurt, Mar 14 2015
a(n+1) = 2^(2*n) + a(n), a(0) = 0. - Ben Paul Thurston, Dec 27 2015
a(k*n)/a(n) = 1 + 4^n + ... + 4^((k-1)*n). - Gregory L. Simay, Jun 09 2016
Dirichlet g.f.: (PolyLog(s, 4) - zeta(s))/3. - Ilya Gutkovskiy, Jun 26 2016
A000120(a(n)) = n. - André Dalwigk, Mar 26 2018
a(m) divides a(m*n), in particular: a(2*n) == 0 (mod 5), a(3*n) == 0 (mod 3*7), a(5*n) == 0 (mod 11*31), etc. - M. F. Hasler, Oct 19 2018
a(n) = 4^(n-1) + a(n-1). - Bob Selcoe, Jan 01 2020
a(n) = A178415(1, n) = A347834(1, n-1), arrays, for n >= 1. - Wolfdieter Lang, Nov 29 2021
a(n) = A000225(2*n)/3. - John Keith, Jan 22 2022
a(n) = A080674(n) + 1 = A047849(n) - 1 = A163834(n) - 2 = A155701(n) - 3 = A163868(n) - 4 = A156605(n) - 7. - Ray Chandler, Jun 16 2023
From Peter Bala, Jul 23 2025: (Start)
The following are examples of telescoping products. Cf. A016153:
Product_{k = 1..2*n} 1 + 2^k/a(k+1) = a(n+1)/A007583(n) = (4^(n+1) - 1)/(2*4^n + 1).
Hence, Product_{k >= 1} 1 + 2^k/a(k+1) = 2.
Product_{k >= 1} 1 - 2^k/a(k+1) = 2/5, since 1 - 2^n/a(n+1) = b(n)/b(n-1), where b(n) = 2 - 3/(1 - 2^(n+1)).
Product_{k >= 1} 1 + (-2)^k/a(k+1) = 2/3, since 1 + (-2)^n/a(n+1) = c(n)/c(n-1), where c(n) = 2 - 1/(1 + (-2)^(n+1)).
Product_{k >= 1} 1 - (-2)^k/a(k+1) = 6/5, since 1 - (-2)^n/a(n+1) = d(n)/d(n-1), where d(n) = 2 - 1/(1 - (-2)^(n+1)). (End)

A001870 Expansion of (1-x)/(1 - 3*x + x^2)^2.

Original entry on oeis.org

1, 5, 19, 65, 210, 654, 1985, 5911, 17345, 50305, 144516, 411900, 1166209, 3283145, 9197455, 25655489, 71293590, 197452746, 545222465, 1501460635, 4124739581, 11306252545, 30928921224, 84451726200, 230204999425
Offset: 0

Views

Author

Keywords

Comments

a(n) = ((n+1)*F(2*n+3)+(2*n+3)*F(2*(n+1)))/5 with F(n)=A000045(n) (Fibonacci numbers). One half of odd-indexed A001629(n), n >= 2 (Fibonacci convolution).
Convolution of F(2n+1) (A001519) and F(2n+2) (A001906(n+1)). - Graeme McRae, Jun 07 2006
Number of reentrant corners along the lower contours of all directed column-convex polyominoes of area n+3 (a reentrant corner along the lower contour is a vertical step that is followed by a horizontal step). a(n) = Sum_{k=0..ceiling((n+1)/2)} k*A121466(n+3,k). - Emeric Deutsch, Aug 02 2006
From Wolfdieter Lang, Jan 02 2012: (Start)
a(n) = A024458(2*n), n >= 1 (bisection, even arguments).
a(n) is also the odd part of the bisection of the half-convolution of the sequence A000045(n+1), n >= 0, with itself. See a comment on A201204 for the definition of the half-convolution of a sequence with itself. There one also finds the rule for the o.g.f. which in this case is Chato(x)/2 with the o.g.f. Chato(x) = 2*(1-x)/(1-3*x+x^2)^2 of A001629(2*n+3), n >= 0.
(End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A060921(n+1, 1)/2.
Partial sums of A030267. First differences of A001871.
Cf. A121466.
Cf. A023610.

Programs

  • GAP
    F:=Fibonacci;; List([0..30], n-> ((n+1)*F(2*n+3)+(2*n+3)*F(2*(n+1)))/5); # G. C. Greubel, Jul 15 2019
  • Haskell
    a001870 n = a001870_list !! n
    a001870_list = uncurry c $ splitAt 1 $ tail a000045_list where
       c us vs'@(v:vs) = (sum $ zipWith (*) us vs') : c (v:us) vs
    -- Reinhard Zumkeller, Oct 31 2013
    
  • Magma
    I:=[1, 5, 19, 65]; [n le 4 select I[n] else 6*Self(n-1) -11*Self(n-2)+6*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 10 2012
    
  • Maple
    A001870:=-(-1+z)/(z**2-3*z+1)**2; # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    CoefficientList[Series[(1-x)/(1-3*x+x^2)^2,{x,0,40}],x] (* Vincenzo Librandi, Jun 10 2012 *)
    LinearRecurrence[{6,-11,6,-1},{1,5,19,65},30] (* Harvey P. Dale, Aug 17 2013 *)
    With[{F=Fibonacci}, Table[((n+1)*F[2*n+3]+(2*n+3)*F[2*n+2])/5, {n,0,30}]] (* G. C. Greubel, Jul 15 2019 *)
  • PARI
    Vec((1-x)/(1-3*x+x^2)^2+O(x^30)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • Sage
    f=fibonacci; [((n+1)*f(2*n+3)+(2*n+3)*f(2*n+2))/5 for n in (0..30)] # G. C. Greubel, Jul 15 2019
    

Formula

a(n) = Sum_{k=1..n+1} k*binomial(n+k+1, 2k). - Emeric Deutsch, Jun 11 2003
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 10 2012
a(n) = (A238846(n) + A001871(n))/2. - Philippe Deléham, Mar 06 2014
a(n) = ((2*n-1)*Fibonacci(2*n) - n*Fibonacci(2*n-1))/5 [Czabarka et al.]. - N. J. A. Sloane, Sep 18 2018
E.g.f.: exp(3*x/2)*(5*(5 + 11*x)*cosh(sqrt(5)*x/2) + sqrt(5)*(13 + 25*x)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Mar 04 2025

Extensions

More terms from Christian G. Bower

A060920 Bisection of Fibonacci triangle A037027: even-indexed members of column sequences of A037027 (not counting leading zeros).

Original entry on oeis.org

1, 2, 1, 5, 5, 1, 13, 20, 9, 1, 34, 71, 51, 14, 1, 89, 235, 233, 105, 20, 1, 233, 744, 942, 594, 190, 27, 1, 610, 2285, 3522, 2860, 1295, 315, 35, 1, 1597, 6865, 12473, 12402, 7285, 2534, 490, 44, 1, 4181, 20284, 42447, 49963, 36122, 16407, 4578, 726, 54, 1
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Companion triangle (odd-indexed members) A060921.

Examples

			Triangle begins as:
      1;
      2,     1;
      5,     5,      1;
     13,    20,      9,      1;
     34,    71,     51,     14,      1;
     89,   235,    233,    105,     20,     1;
    233,   744,    942,    594,    190,    27,     1;
    610,  2285,   3522,   2860,   1295,   315,    35,    1;
   1597,  6865,  12473,  12402,   7285,  2534,   490,   44,    1;
   4181, 20284,  42447,  49963,  36122, 16407,  4578,  726,   54,  1;
  10946, 59155, 140109, 190570, 163730, 91959, 33705, 7776, 1035, 65, 1;
		

Crossrefs

Column sequences: A001519 (k=0), A054444 (k=1), A061178 (k=2), A061179 (k=3), A061180 (k=4), A061181 (k=5).

Programs

  • Magma
    A060920:= func< n,k | (&+[Binomial(2*n-k-j, j)*Binomial(2*n-k-2*j, k): j in [0..2*n-k]]) >;
    [A060920(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 06 2021
    
  • Mathematica
    A060920[n_, k_]:= Sum[Binomial[2*n-k-j, j]*Binomial[2*n-k-2*j, k], {j,0,2*n-k}];
    Table[A060920[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
  • Sage
    def A060920(n,k): return sum(binomial(2*n-k-j, j)*binomial(2*n-k-2*j, k) for j in (0..2*n-k))
    flatten([[A060920(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 06 2021

Formula

T(n, k) = A037027(2*n-k, k).
T(n, k) = ((2*(n-k) + 1)*A060921(n-1, k-1) + 4*n*T(n-1, k-1))/(5*k), n >= k >= 1.
T(n, 0) = F(n)^2 + F(n+1)^2 = A001519(n), with the Fibonacci numbers F(n) = A000045(n).
Sum_{k=0..n} T(n, k) = (2^(2*n + 1) + 1)/3 = A007583(n).
G.f. for column m >= 0: x^m*pFe(m+1, x)/(1-3*x+x^2)^(m+1), where pFe(n, x) := Sum_{m=0..n} A061176(n, m)*x^m (row polynomials of signed triangle A061176).
G.f.: (1-x*(1+y))/(1 - (3+2*y)*x + (1+y)^2*x^2). - Vladeta Jovovic, Oct 11 2003

A061177 Coefficients of polynomials ( (1 -x +sqrt(x))^(n+1) - (1 -x -sqrt(x))^(n+1) )/(2*sqrt(x)).

Original entry on oeis.org

1, 2, -2, 3, -5, 3, 4, -8, 8, -4, 5, -10, 11, -10, 5, 6, -10, 6, -6, 10, -6, 7, -7, -14, 29, -14, -7, 7, 8, 0, -56, 120, -120, 56, 0, -8, 9, 12, -126, 288, -365, 288, -126, 12, 9, 10, 30, -228, 540, -770, 770, -540, 228, -30, -10, 11, 55, -363, 858
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

The row polynomial pFo(m,x) = Sum_{j=0..m} T(m, j)*x^j is the numerator of the g.f. for the m-th column sequence of A060921, the odd part of the bisected Fibonacci triangle.

Examples

			The first few polynomials are:
pFo(0, x) = 1.
pFo(1, x) = 2 -  2*x.
pFo(2, x) = 3 -  5*x +  3*x^2.
pFo(3, x) = 4 -  8*x +  8*x^2 -  4*x^3.
pFo(4, x) = 5 - 10*x + 11*x^2 - 10*x^3 +  5*x^4.
pFo(5, x) = 6 - 10*x +  6*x^2 -  6*x^3 + 10*x^4 - 6*x^5.
Number triangle begins as:
   1;
   2,  -2;
   3,  -5,    3;
   4,  -8,    8,  -4;
   5, -10,   11, -10,    5;
   6, -10,    6,  -6,   10,  -6;
   7,  -7,  -14,  29,  -14,  -7,    7;
   8,   0,  -56, 120, -120,  56,    0,  -8;
   9,  12, -126, 288, -365, 288, -126,  12,   9;
  10,  30, -228, 540, -770, 770, -540, 228, -30, -10;
		

Crossrefs

Cf. A059841, A060921, A061176 (companion triangle).

Programs

  • Magma
    A061177:= func< n,k | (&+[(-1)^(k+j)*Binomial(n+1,2*j+1)*Binomial(n-2*j,k-j): j in [0..k]]) >;
    [A061177(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 06 2021
    
  • Mathematica
    T[n_, k_]:= Sum[(-1)^(k-j)*Binomial[n+1, 2*j+1]*Binomial[n-2*j, k-j], {j,0,k}];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
  • Sage
    def A061177(n,k): return sum((-1)^(k+j)*binomial(n+1,2*j+1)*binomial(n-2*j,k-j) for j in (0..k))
    flatten([[A061177(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 06 2021

Formula

T(n, k) = coefficient of x^k of ( (1 -x +sqrt(x))^(n+1) - (1 -x -sqrt(x))^(n+1) )/(2*sqrt(x)).
T(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1, 2*j+1)*binomial(n-2*j, k-j), if 0 <= k <= floor(n/2), T(n, k) = (-1)^n*T(n, n-k) if floor(n/2) < k <= n else 0.
Sum_{k=0..n} T(n, k) = (1 + (-1)^n)/2 = A059841(n). - G. C. Greubel, Apr 06 2021

A060931 Fourth convolution of Lucas numbers A000032(n+1), n >= 0.

Original entry on oeis.org

1, 15, 110, 545, 2120, 7043, 20965, 57560, 148545, 365045, 862224, 1970905, 4382820, 9520315, 20265665, 42385132, 87284120, 177293730, 355738710, 705980760, 1387213926, 2701362950, 5217448800, 10001654350
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( ((1+2*x)/(1-x-x^2))^5 )); // G. C. Greubel, Apr 08 2021
    
  • Mathematica
    Table[((n+1)/120)*((5*n^3+5*n^2-10*n+72)*LucasL[n+5] + 4*(5*n^2+10*n-24)*LucasL[n+ 4]), {n, 0, 40}] (* G. C. Greubel, Apr 08 2021 *)
  • Sage
    def A060931_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( ((1+2*x)/(1-x-x^2))^5 ).list()
    A060931_list(40) # G. C. Greubel, Apr 08 2021

Formula

a(n) = A060921(n+4, 4) (fifth column of Lucas triangle).
a(n) = (n+1)*( (15*n^3 +55*n^2 +50*n +24)*L(n+2) + 2*(5*n^3 +15*n^2 +10*n +24)*L(n+1))/5!, with the Lucas numbers L(n)=A000032(n).
G.f.: ((1+2*x)/(1-x-x^2))^5.
Showing 1-10 of 10 results.