Kenneth J Ramsey has authored 32 sequences. Here are the ten most recent ones:
A182355
Table of triangular arguments such that if A002262(14*k) = "r" then the product A182441(k,i + 1) *A182441(k,i + 2) equals "r" + a(k,i)*(a(k,i) + 1)/2 for i<4, while a(k,i) = 0 for i>3.
Original entry on oeis.org
-1, 56, -5, 399, 60, -8, 2400, 463, 63, -9, 0, 2816, 512, 64, -11, 0, 0, 3135, 531, 66, -12, 0, 0, 0, 3260, 565, 67, -13, 0, 0, 0, 0, 3482, 584, 68, -14, 0, 0, 0, 0, 0, 3607, 603, 69, -15, 0, 0, 0, 0, 0, 0, 3732, 622
Offset: 0
-
highTri = Compile[{{S1,_Integer}},Module[{xS0=0,xS1=S1},
While[xS1-xS0*(xS0+1)/2>xS0,xS0++];
xS0]];
overTri = Compile[{{S2,_Integer}},Module[{xS0=0,xS2=S2},
While[xS2-xS0*(xS0+1)/2>xS0,xS0++];
xS2 - (xS0*(1+xS0)/2)]];
tt = SparseArray[{{12,1} -> 0,{1,12} -> 0}];
K1 = 0;
m = 14;While[K1<12,J1=highTri[m*K1];X =2*(m+K1+(J1*2+1));
K2 = 6 m - K1 + X; K3 = 6 K2 - m + X;K4 = 6 K3 - K2 + X;
o = overTri[m*K1]; tt[[1,K1+1]] =highTri[m*K1];
tt[[2,K1+1]] = highTri[m*K2-o];tt[[3,K1+1]] = highTri[K2*K3-o];tt[[4,K1+1]] = highTri[K3*K4-o];
K1++];k = 1;
While[k<13,z = 1; xx = 99; While[z<5 && xx == 99,
If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,Break[]];
If[z == 1,t = -tt[[z,k]]-1;tt[[z,k]] = t,s = -tt[[z-1,k]]-1;tt[[z-1,k]]=s;t =-tt[[z,k]]-1];tt[[z,k]] = t;
w = 1;While[w<5 && xx == 99,If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[]];If[w==z,w++];
t=-tt[[w,k]] - 1;tt[[w,k]]=t;If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[],
t = -tt[[w,k]] - 1];tt[[w,k]] = t;w++];z++];cc = tt[[1,k]] -6 tt[[2,k]] + tt[[3,k]];p = 5;While[p < 14-k,
tt[[p,k]] = 6 tt[[p-1,k]] - tt[[p-2,k]] + cc;p++]; k++];
a=1;list2 = Reap[While[a<12, b=a; While[b>4,Sow[0];b--];While[b>0, Sow[tt[[b, a+1-b]]]; b--]; a++]][[2, 1]];list2
A212329
Expansion of x*(5+x)/(1-7*x+7*x^2-x^3).
Original entry on oeis.org
0, 5, 36, 217, 1272, 7421, 43260, 252145, 1469616, 8565557, 49923732, 290976841, 1695937320, 9884647085, 57611945196, 335787024097, 1957110199392, 11406874172261, 66484134834180, 387497934832825, 2258503474162776, 13163522910143837, 76722633986700252
Offset: 1
-
m = 12; n = 1; c = 0;
list3 = Reap[While[c < 22, t = 6 n - m + 6; Sow[t];m = n; n = t;c++]][[2,1]]
CoefficientList[ Series[x (5 + x)/(1 - 7x + 7x^2 - x^3), {x, 0, 20}], x] (* or *)
LinearRecurrence[{7, -7, 1}, {0, 5, 36}, 21] (* Robert G. Wilson v, Jun 24 2014 *)
-
concat(0, Vec(x^2*(5+x)/((1-x)*(1-6*x+x^2)) + O(x^40))) \\ Colin Barker, Mar 05 2016
A182193
Sequence of row differences related to table A182355.
Original entry on oeis.org
-1, 1, 19, 125, 743, 4345, 25339, 147701, 860879, 5017585, 29244643, 170450285, 993457079, 5790292201, 33748296139, 196699484645, 1146448611743, 6681992185825, 38945504503219, 226991034833501, 1323000704497799, 7711013192153305, 44943078448422043
Offset: 0
-
I:=[-1,1]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2)+12: n in [1..30]]; // Vincenzo Librandi, Feb 10 2014
-
Pell:= proc(n) option remember;
if n<2 then n
else 2*Pell(n-1) + Pell(n-2)
fi; end:
seq(Pell(2*n) + 2*Pell(2*n-1) - 3, n=0..40); # G. C. Greubel, May 24 2021
-
LinearRecurrence[{7,-7,1},{-1,1,19},30] (* Harvey P. Dale, Feb 09 2014 *)
-
Vec(-(1-8*x-5*x^2)/((1-x)*(1-6*x+x^2)) + O(x^30)) \\ Colin Barker, Mar 05 2016
-
[lucas_number2(2*n,2,-1) - lucas_number1(2*n,2,-1) - 3 for n in (0..40)] # G. C. Greubel, May 24 2021
A182188
A sequence of row differences for table A182119.
Original entry on oeis.org
1, -1, -11, -69, -407, -2377, -13859, -80781, -470831, -2744209, -15994427, -93222357, -543339719, -3166815961, -18457556051, -107578520349, -627013566047, -3654502875937, -21300003689579
Offset: 0
-
m = 13;n = 3; c = 0;
list3 = Reap[While[c < 22, t = 6 n - m - 4; Sow[t];m = n; n = t;c++]][[2,1]]
Table[1 -Fibonacci[2*n, 2], {n,0,40}] (* G. C. Greubel, May 24 2021 *)
-
[1 - lucas_number1(2*n,2,-1) for n in (0..40)] # G. C. Greubel, May 24 2021
A182119
Table of triangular arguments such that if A002262(14*k) = "r" then the product A182439(k,i + 1) *A182439(k,i + 2) equals "r" + A000217(a(k,i)) for i<4, while a(k,i) = 0 for i>3.
Original entry on oeis.org
0, 55, 4, 384, 51, 7, 2303, 328, 48, 8, 0, 1943, 287, 47, 10, 0, 0, 1680, 276, 45, 11, 0, 0, 0, 1611, 250, 44, 12, 0, 0, 0, 0, 1445, 239, 43, 13, 0, 0, 0, 0, 0, 1376, 228, 42, 14, 0, 0, 0, 0, 0, 1307, 213, 41, 15
Offset: 0
-
highTri = Compile[{{S1,_Integer}},Module[{xS0=0,xS1=S1},
While[xS1-xS0*(xS0+1)/2>xS0,xS0++];
xS0]];
overTri = Compile[{{S2,_Integer}},Module[{xS0=0,xS2=S2},
While[xS2-xS0*(xS0+1)/2>xS0,xS0++];
xS2 - (xS0*(1+xS0)/2)]];
tt = SparseArray[{{12,1} -> 1,{1,12} -> 1}];
K1 = 0;
m = 14;While[K1<12,J1=highTri[m*K1];X =2*(m+K1-(J1*2+1));
K2 = 6 m - K1 + X; K3 = 6 K2 - m + X;K4 = 6 K3 - K2 + X;
o = overTri[m*K1]; tt[[1,K1+1]] =highTri[m*K1];
tt[[2,K1+1]] = highTri[m*K2-o];tt[[3,K1+1]] = highTri[K2*K3-o];tt[[4,K1+1]] = highTri[K3*K4-o];
K1++];k = 1;
While[k<13,z = 1; xx = 99; While[z<5 && xx == 99,
If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,Break[]];
If[z == 1,t = -tt[[z,k]]-1;tt[[z,k]] = t,s = -tt[[z-1,k]]-1;tt[[z-1,k]]=s;t =-tt[[z,k]]-1];tt[[z,k]] = t;
w = 1;While[w<5 && xx == 99,If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[]];If[w==z,w++];
t=-tt[[w,k]] - 1;tt[[w,k]]=t;If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[],
t = -tt[[w,k]] - 1];tt[[w,k]] = t;w++];z++];cc = tt[[1,k]] -6 tt[[2,k]] + tt[[3,k]];p = 5;While[p < 14-k,
tt[[p,k]] = 6 tt[[p-1,k]] - tt[[p-2,k]] + cc;p++]; k++];
a=1;list2 = Reap[While[a<12, b=a; While[b>4,Sow[0];b--];While[b>0, Sow[tt[[b, a+1-b]]]; b--]; a++]][[2, 1]];list2
A182118
Table of triangular arguments such that if A002262(14*k) = "r" then the product A182440(k,i + 1) *A182440(k,i + 2) equals "r" + a(k,i)*(a(k,i)+1)/2.
Original entry on oeis.org
-1, 0, -5, 63, 8, -8, 440, 151, 15, -9, 0, 996, 224, 20, -11, 0, 0, 1455, 267, 26, -12, 0, 0, 0, 1720, 325, 31, -13, 0, 0, 0, 0, 2082, 368, 36, -14, 0, 0, 0, 0, 0, 2347, 411, 41, -15, 0, 0, 0, 0, 0, 0, 2612, 454, 46
Offset: 0
-
highTri = Compile[{{S1,_Integer}},Module[{xS0=0,xS1=S1},
While[xS1-xS0*(xS0+1)/2>xS0,xS0++];
xS0]];
overTri = Compile[{{S2,_Integer}},Module[{xS0=0,xS2=S2},
While[xS2-xS0*(xS0+1)/2>xS0,xS0++];
xS2 - (xS0*(1+xS0)/2)]];
tt = SparseArray[{{12,1} -> 0,{1,12} -> 0}];
K1 = 0;
m = 14;While[K1<12,J1=highTri[m*K1];X =2*(m+K1+(J1*2+1));
K2 = 6 K1 - m + X; K3 = 6 K2 - K1 + X;K4 = 6 K3 - K2 + X;
o = overTri[m*K1]; tt[[1,K1+1]] =highTri[m*K1];
tt[[2,K1+1]] = highTri[K1*K2-o];tt[[3,K1+1]] = highTri[K2*K3-o];tt[[4,K1+1]] = highTri[K3*K4-o];
K1++];k = 1;
While[k<13,z = 1; xx = 99; While[z<5 && xx == 99,
If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,Break[]];
If[z == 1,t = -tt[[z,k]]-1;tt[[z,k]] = t,s = -tt[[z-1,k]]-1;tt[[z-1,k]]=s;t =-tt[[z,k]]-1];tt[[z,k]] = t;
w = 1;While[w<5 && xx == 99,If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[]];If[w==z,w++];
t=-tt[[w,k]] - 1;tt[[w,k]]=t;If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[],
t = -tt[[w,k]] - 1];tt[[w,k]] = t;w++];z++];cc = tt[[1,k]] -6 tt[[2,k]] + tt[[3,k]];p = 5;While[p < 14-k,
tt[[p,k]] = 6 tt[[p-1,k]] - tt[[p-2,k]] + cc;p++]; k++];
a=1;list2 = Reap[While[a<12, b=a; While[b>4,Sow[0];b--];While[b>0, Sow[tt[[b, a+1-b]]]; b--]; a++]][[2, 1]];list2
A214229
a(n) equals gcd(r,2*n+1) where r is 1 + (A143608(i+1) mod (2*n+1)) where A143608(i) is the first zero mod 2n+1 other than 0.
Original entry on oeis.org
3, 5, 1, 9, 11, 13, 3, 17, 19, 3, 1, 25, 27, 29, 1, 33, 5, 37, 3, 1, 43, 9, 1, 1, 17, 53, 11, 57, 59, 61, 9, 65, 67, 3, 1, 73, 3, 11, 1, 81, 83, 17, 3, 89, 13, 3, 19, 97, 99, 101, 1, 3, 107, 109, 3, 113, 5, 9, 17, 121, 3, 125, 1, 129, 131, 19
Offset: 1
a(7) = 3 which is a factor of 2*7 + 1.
-
A214229 := proc(n)
local i,r ;
i := 1;
while A143608(i) mod (2*n+1) <> 0 do
i := i+1 ;
end do;
r := 1+(A143608(i+1) mod (2*n+1)) ;
gcd(r,2*n+1) ;
end proc: # R. J. Mathar, Jul 22 2012
-
gcdN2[x_,y_] = GCD[y - x + 1,y];
r0 = 3;
table=Reap[While[r0 < 200,s1=1;s0=0;count=1;While[True,count++;temp=Mod[4*s1 - s0,r0];
If[temp==0,Break[]];count++;s0 = s1; s1 = temp;
temp=Mod[2*s1-s0,r0];If[temp == 0,Break[]];s0 = s1;s1 = temp;];
Sow[gcdN2[s1,r0],d];
r0+=2;]][[2]];
table
A214228
a(n) = gcd(r,2*n+1) where r is 1 + (A143608(i-1) mod (2*n+1)) and A143608(i) is the first zero mod 2*n+1 other than i=0.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 5, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 13, 1, 1, 5, 1, 1, 3, 1, 5, 1, 1, 1, 7, 1, 1, 23, 1, 1, 25, 7, 1, 1, 1, 5, 29, 1, 7, 31, 5, 1, 1, 1, 1, 35, 1, 1, 37, 1, 23, 13, 7, 1, 41, 1, 1, 1, 1, 7, 5, 1, 1, 47, 13, 1, 49, 1, 1, 9, 31, 1, 53
Offset: 1
a(7) = 5 which is a factor of 2*7+1.
-
A214228 := proc(n)
local i,r ;
i := 1;
while A143608(i) mod (2*n+1) <> 0 do
i := i+1 ;
end do;
r := 1+(A143608(i-1) mod (2*n+1)) ;
gcd(r,2*n+1) ;
end proc: # R. J. Mathar, Jul 22 2012
-
gcdN1[x_,y_] = GCD[x + 1,y]; r0 = 3; Reap[While[r0 < 200, s1=1; s0=0; count=1; While[True, count++; temp=Mod[4*s1 - s0, r0]; If[temp==0, Break[]]; count++; s0 = s1; s1 = temp; temp=Mod[2*s1-s0,r0]; If[temp == 0, Break[]]; s0 = s1; s1 = temp;]; Sow[gcdN1[s1, r0], c]; r0+=2;]][[2,1]]
A182441
Table, read by antidiagonals, in which the n-th row comprises A214206(n) in position 0 followed by a second order recursive series G in which each product G(i)*G(i+1) lies in the same row of A001477 (interpreted as a square array - see below).
Original entry on oeis.org
0, 0, 4, 14, 1, 7, 114, 14, 2, 8, 700, 131, 14, 3, 10, 4116, 820, 144, 14, 4, 11, 24026, 4837, 912, 149, 14, 5, 12, 140070, 28250, 5390, 948, 158, 14, 6, 13, 816424, 164711, 31490, 5607, 1012, 163, 14, 7, 14, 4758504
Offset: 0
For i>0 a(0,i) * a(0,i+1) = 0*14,14*114,114*700,700*4116,etc. which are all triangular numbers and lie in row 0 of square array A001477, while a(1,i)*a(1.i+1) = 1*14, 14*131, 131*820, 820*4837 etc. which are all 4 more than a triangular number and lie in row 4 of square array A001477.
-
highTri = Compile[{{S1,_Integer}}, Module[{xS0=0, xS1=S1}, While[xS1-xS0*(xS0+1)/2 > xS0, xS0++]; xS0]];
overTri = Compile[{{S2,_Integer}}, Module[{xS0=0, xS2=S2}, While[xS2-xS0*(xS0+1)/2 > xS0, xS0++]; xS2 - (xS0*(1+xS0)/2)]];
K1 = 0; m = 14; tab=Reap[While[K1<16,J1=highTri[m*K1]; X = 2*(m+K1+(J1*2+1)); K2 = (6 m - K1 + X); K3 = 6 K2 - m + X;
K4 = 6 K3 - K2 + X; K5 = 6 K4 -K3 + X; K6 = 6*K5 - K4 + X; K7 = 6*K6-K5+X; K8 = 6*K7-K6+X; Sow[J1,c]; Sow[K1,d]; Sow[m,e];
Sow[K2,f]; Sow[K3,g]; Sow[K4,h];
Sow[K5,i]; Sow[K6,j]; Sow[K7,k]; Sow[K8,l]; K1++]][[2]]; a=1; list5 = Reap[While[a<11, b=a; While[b>0,
Sow[tab[[b,a+1-b]]]; b--]; a++]][[2,1]]; list5
A182439
Table a(k,i), read by antidiagonals, in which the n-th row comprises A214206(n) in position 0 followed by a second order recursive series G in which each product G(i)*G(i+1) lies in the same row of A001477 (interpreted as a square array - see below).
Original entry on oeis.org
0, 0, 4, 14, 1, 7, 110, 14, 2, 8, 672, 95, 14, 3, 10, 3948, 568, 84, 14, 4, 11, 23042, 3325, 492, 81, 14, 5, 12, 134330, 19394, 2870, 472, 74, 14, 6, 13, 782964, 113051, 16730, 2751, 424, 71, 14, 7, 14, 4563480, 658924, 97512, 16034, 2464, 404, 68, 14, 8, 15
Offset: 0
0, 0, 14, 110, 672, 3948, 23042,134330,782964,
4, 1, 14, 95, 568, 3325, 19394,113051,658924,
7, 2, 14, 84, 492, 2870, 16730, 97512,568344,
8, 3, 14, 81, 472, 2751, 16034, 93453,544684,
10, 4, 14, 74, 424, 2464, 14354, 83654,487564,
11, 5, 14, 71, 404, 2345, 13658, 79595,463904,
12, 6, 14, 68, 384, 2226, 12962, 75536,440244.
Note that 0*14, 14*110, 110*672, etc. are all triangular numbers and thus appear in row 0 of square array A001477; while, 1*14, 14*95, 95*568, 568*3325, etc. are all 4 more than a triangular number and appear in row 4 of square array A001477.
-
A182439 := proc(n,k)
if k = 0 then
A003056(14*n) ;
elif k = 1 then
n;
elif k = 2 then
14;
else
6*procname(n,k-1)-procname(n,k-2)+ 28+2*n-2-4*procname(n,0) ;
end if;
end proc: # R. J. Mathar, Jul 09 2012
-
highTri = Compile[{{S1,_Integer}}, Module[{xS0=0, xS1=S1}, While[xS1-xS0*(xS0+1)/2 > xS0, xS0++]; xS0]];
overTri = Compile[{{S2,_Integer}}, Module[{xS0=0, xS2=S2}, While[xS2-xS0*(xS0+1)/2 > xS0, xS0++]; xS2 - (xS0*(1+xS0)/2)]];
K1 = 0; m = 14; tab=Reap[While[K1<16,J1=highTri[m*K1]; X = 2*(m+K1-(J1*2+1)); K2 = (6 m - K1 + X); K3 = 6 K2 - m + X;
K4 = 6 K3 - K2 + X; K5 = 6 K4 -K3 + X; K6 = 6*K5 - K4 + X; K7 = 6*K6-K5+X; K8 = 6*K7-K6+X; Sow[J1,c]; Sow[K1,d]; Sow[m,e];
Sow[K2,f]; Sow[K3,g]; Sow[K4,h];
Sow[K5,i]; Sow[K6,j]; Sow[K7,k]; Sow[K8,l]; K1++]][[2]]; a=1; list5 = Reap[While[a<11, b=a; While[b>0,
Sow[tab[[b,a+1-b]]]; b--]; a++]][[2,1]]; list5
(* Second program: *)
A003056[n_] := Floor[(Sqrt[1 + 8n] - 1)/2];
T[n_, k_] := Switch[k, 0, A003056[14n], 1, n, 2, 14, _, 6T[n, k-1] - T[n, k-2] + 28 + 2n - 2 - 4T[n, 0]];
Table[T[n-k, k], {n, 0, 9}, {k, n, 0, -1}] (* Jean-François Alcover, May 09 2023, after R. J. Mathar *)
Comments