cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A182188 A sequence of row differences for table A182119.

Original entry on oeis.org

1, -1, -11, -69, -407, -2377, -13859, -80781, -470831, -2744209, -15994427, -93222357, -543339719, -3166815961, -18457556051, -107578520349, -627013566047, -3654502875937, -21300003689579
Offset: 0

Views

Author

Kenneth J Ramsey, Apr 17 2012

Keywords

Comments

This is a list of row differences corresponding to a difference of 1 in table A182119, column 0. If A181119(k+1,0) - A182119(k,0) = 1, then a(n) = A182119(k+1,n) - A182119(k,n).
If p is a prime of the form 8*n +- 3, then a(p) == 3 (mod p). If p is a prime of the form 8*n +- 1, then a(p) == -1 (mod p).

Crossrefs

Programs

  • Mathematica
    m = 13;n = 3; c = 0;
    list3 = Reap[While[c < 22, t = 6 n - m - 4; Sow[t];m = n; n = t;c++]][[2,1]]
    Table[1 -Fibonacci[2*n, 2], {n,0,40}] (* G. C. Greubel, May 24 2021 *)
  • Sage
    [1 - lucas_number1(2*n,2,-1) for n in (0..40)] # G. C. Greubel, May 24 2021

Formula

a(n) = 6*a(n-1) - a(n-2) - 4. [corrected by Klaus Purath, Mar 19 2021]
a(n) = -(A182189(n-1) + 2*A182190(n-1)).
a(n) = 2 - A182189(n).
From Klaus Purath, Mar 19 2021: (Start)
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3).
a(n) = (-1)*Sum_{i=1..2*n-1} A001333(i) for n > 0.
a(n) = 1 - A001542(n) for n > 0.
a(n) = 1 - 2*A001109(n) for n > 0.
a(n) = (-1)*A005409(2*n) for n > 0. (End)
G.f.: (1 - 8*x + 3*x^2)/((1-x)*(1-6*x+x^2)). - Chai Wah Wu, Apr 08 2021
a(n) = 1 - Pell(2*n), where Pell(n) = A000129(n). - G. C. Greubel, May 24 2021

A182118 Table of triangular arguments such that if A002262(14*k) = "r" then the product A182440(k,i + 1) *A182440(k,i + 2) equals "r" + a(k,i)*(a(k,i)+1)/2.

Original entry on oeis.org

-1, 0, -5, 63, 8, -8, 440, 151, 15, -9, 0, 996, 224, 20, -11, 0, 0, 1455, 267, 26, -12, 0, 0, 0, 1720, 325, 31, -13, 0, 0, 0, 0, 2082, 368, 36, -14, 0, 0, 0, 0, 0, 2347, 411, 41, -15, 0, 0, 0, 0, 0, 0, 2612, 454, 46
Offset: 0

Views

Author

Kenneth J Ramsey, Apr 12 2012

Keywords

Comments

It is noted that the difference between adjacent rows of the respective elements, depends on the difference between the elements of column 0 in the respective rows. It is apparent that the series of differences corresponding to a difference of d in column 0, i.e. A(k+1,0) - A(k,0) = d, is defined as follows: D(0) = d, D(1) = 4 - d, D(n) = 6*D(n-1) - D(n-2) -8*d + 4. The sequence of differences corresponding to a difference of -1 or 0 in column 0 form related series A182191 and A182190.
The Mathematica program below first calculates an array containing only the first four nonnegative triangular arguments P of each row then changes at most 2 of the arguments to the corresponding negative value, N = -P -1 in order to obtain the relation a(k,i) -7*a(k,i+1) + 7*a(k,i+2) - a(k,i+3) = 0, then chooses the appropriate argument to continue this relationship with the remainder of the row. In this way, the sequence is finally determined. Thus in this table a few 0's have been changed to -1.

Crossrefs

Programs

  • Mathematica
    highTri = Compile[{{S1,_Integer}},Module[{xS0=0,xS1=S1},
    While[xS1-xS0*(xS0+1)/2>xS0,xS0++];
    xS0]];
    overTri = Compile[{{S2,_Integer}},Module[{xS0=0,xS2=S2},
    While[xS2-xS0*(xS0+1)/2>xS0,xS0++];
    xS2 - (xS0*(1+xS0)/2)]];
    tt = SparseArray[{{12,1} -> 0,{1,12} -> 0}];
    K1 = 0;
    m = 14;While[K1<12,J1=highTri[m*K1];X =2*(m+K1+(J1*2+1));
    K2 = 6 K1 - m + X; K3 = 6 K2 - K1 + X;K4 = 6 K3 - K2 + X;
    o = overTri[m*K1]; tt[[1,K1+1]] =highTri[m*K1];
    tt[[2,K1+1]] = highTri[K1*K2-o];tt[[3,K1+1]] = highTri[K2*K3-o];tt[[4,K1+1]] = highTri[K3*K4-o];
    K1++];k = 1;
    While[k<13,z = 1; xx = 99; While[z<5 && xx == 99,
    If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,Break[]];
    If[z == 1,t = -tt[[z,k]]-1;tt[[z,k]] = t,s = -tt[[z-1,k]]-1;tt[[z-1,k]]=s;t =-tt[[z,k]]-1];tt[[z,k]] = t;
    w = 1;While[w<5 && xx == 99,If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[]];If[w==z,w++];
    t=-tt[[w,k]] - 1;tt[[w,k]]=t;If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[],
    t = -tt[[w,k]] - 1];tt[[w,k]] = t;w++];z++];cc = tt[[1,k]] -6 tt[[2,k]] + tt[[3,k]];p = 5;While[p < 14-k,
    tt[[p,k]] = 6 tt[[p-1,k]] - tt[[p-2,k]] + cc;p++]; k++];
    a=1;list2 = Reap[While[a<12, b=a; While[b>4,Sow[0];b--];While[b>0, Sow[tt[[b, a+1-b]]]; b--]; a++]][[2, 1]];list2

A182355 Table of triangular arguments such that if A002262(14*k) = "r" then the product A182441(k,i + 1) *A182441(k,i + 2) equals "r" + a(k,i)*(a(k,i) + 1)/2 for i<4, while a(k,i) = 0 for i>3.

Original entry on oeis.org

-1, 56, -5, 399, 60, -8, 2400, 463, 63, -9, 0, 2816, 512, 64, -11, 0, 0, 3135, 531, 66, -12, 0, 0, 0, 3260, 565, 67, -13, 0, 0, 0, 0, 3482, 584, 68, -14, 0, 0, 0, 0, 0, 3607, 603, 69, -15, 0, 0, 0, 0, 0, 0, 3732, 622
Offset: 0

Views

Author

Kenneth J Ramsey, Apr 25 2012

Keywords

Comments

The triangular product a(k,i)*(a(k,i)+1)/2 + A002262(14*k) for i<4 = the product of adjacent terms G(k,i+1)*G(k,i+2) where G is table A182441. The remainder of each row is padded with zeros. However, if for i > 3, a(k,i) were set to equal 7*a(k,i-1) - 7*a(k,i-2) + a(k,i-3) then the relation above would not be limited to i < 4.
Also, it is noted that the difference between adjacent rows of the respective elements, depends on the difference between the elements of column 0 in the respective rows. In the Mathematica program below, m is set to 14; however, regardless of it value of m, it is apparent that the series of differences corresponding to a difference of d in column 0, i.e. A(k+1,0) - A(k,0) = d, is defined as follows: D(0) = d, D(1) = - d, D(n) = 6*D(n-1) - D(n-2) -8*d + 4. The sequence of differences corresponding to a difference d of -1 is series A182193.
The Mathematica program below basically first computes only the nonnegative triangular arguments P. Then it changes at most two of the arguments P in each row k to the corresponding negative value, N = -P -1, in order to obtain the relation a(k,3) = a(k,0) - 7*a(k,1) + 7*a(k,2).

Crossrefs

Programs

  • Mathematica
    highTri = Compile[{{S1,_Integer}},Module[{xS0=0,xS1=S1},
    While[xS1-xS0*(xS0+1)/2>xS0,xS0++];
    xS0]];
    overTri = Compile[{{S2,_Integer}},Module[{xS0=0,xS2=S2},
    While[xS2-xS0*(xS0+1)/2>xS0,xS0++];
    xS2 - (xS0*(1+xS0)/2)]];
    tt = SparseArray[{{12,1} -> 0,{1,12} -> 0}];
    K1 = 0;
    m = 14;While[K1<12,J1=highTri[m*K1];X =2*(m+K1+(J1*2+1));
    K2 = 6 m - K1 + X; K3 = 6 K2 - m + X;K4 = 6 K3 - K2 + X;
    o = overTri[m*K1]; tt[[1,K1+1]] =highTri[m*K1];
    tt[[2,K1+1]] = highTri[m*K2-o];tt[[3,K1+1]] = highTri[K2*K3-o];tt[[4,K1+1]] = highTri[K3*K4-o];
    K1++];k = 1;
    While[k<13,z = 1; xx = 99; While[z<5 && xx == 99,
    If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,Break[]];
    If[z == 1,t = -tt[[z,k]]-1;tt[[z,k]] = t,s = -tt[[z-1,k]]-1;tt[[z-1,k]]=s;t =-tt[[z,k]]-1];tt[[z,k]] = t;
    w = 1;While[w<5 && xx == 99,If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[]];If[w==z,w++];
    t=-tt[[w,k]] - 1;tt[[w,k]]=t;If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[],
    t = -tt[[w,k]] - 1];tt[[w,k]] = t;w++];z++];cc = tt[[1,k]] -6 tt[[2,k]] + tt[[3,k]];p = 5;While[p < 14-k,
    tt[[p,k]] = 6 tt[[p-1,k]] - tt[[p-2,k]] + cc;p++]; k++];
    a=1;list2 = Reap[While[a<12, b=a; While[b>4,Sow[0];b--];While[b>0, Sow[tt[[b, a+1-b]]]; b--]; a++]][[2, 1]];list2
Showing 1-3 of 3 results.