cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A182355 Table of triangular arguments such that if A002262(14*k) = "r" then the product A182441(k,i + 1) *A182441(k,i + 2) equals "r" + a(k,i)*(a(k,i) + 1)/2 for i<4, while a(k,i) = 0 for i>3.

Original entry on oeis.org

-1, 56, -5, 399, 60, -8, 2400, 463, 63, -9, 0, 2816, 512, 64, -11, 0, 0, 3135, 531, 66, -12, 0, 0, 0, 3260, 565, 67, -13, 0, 0, 0, 0, 3482, 584, 68, -14, 0, 0, 0, 0, 0, 3607, 603, 69, -15, 0, 0, 0, 0, 0, 0, 3732, 622
Offset: 0

Views

Author

Kenneth J Ramsey, Apr 25 2012

Keywords

Comments

The triangular product a(k,i)*(a(k,i)+1)/2 + A002262(14*k) for i<4 = the product of adjacent terms G(k,i+1)*G(k,i+2) where G is table A182441. The remainder of each row is padded with zeros. However, if for i > 3, a(k,i) were set to equal 7*a(k,i-1) - 7*a(k,i-2) + a(k,i-3) then the relation above would not be limited to i < 4.
Also, it is noted that the difference between adjacent rows of the respective elements, depends on the difference between the elements of column 0 in the respective rows. In the Mathematica program below, m is set to 14; however, regardless of it value of m, it is apparent that the series of differences corresponding to a difference of d in column 0, i.e. A(k+1,0) - A(k,0) = d, is defined as follows: D(0) = d, D(1) = - d, D(n) = 6*D(n-1) - D(n-2) -8*d + 4. The sequence of differences corresponding to a difference d of -1 is series A182193.
The Mathematica program below basically first computes only the nonnegative triangular arguments P. Then it changes at most two of the arguments P in each row k to the corresponding negative value, N = -P -1, in order to obtain the relation a(k,3) = a(k,0) - 7*a(k,1) + 7*a(k,2).

Crossrefs

Programs

  • Mathematica
    highTri = Compile[{{S1,_Integer}},Module[{xS0=0,xS1=S1},
    While[xS1-xS0*(xS0+1)/2>xS0,xS0++];
    xS0]];
    overTri = Compile[{{S2,_Integer}},Module[{xS0=0,xS2=S2},
    While[xS2-xS0*(xS0+1)/2>xS0,xS0++];
    xS2 - (xS0*(1+xS0)/2)]];
    tt = SparseArray[{{12,1} -> 0,{1,12} -> 0}];
    K1 = 0;
    m = 14;While[K1<12,J1=highTri[m*K1];X =2*(m+K1+(J1*2+1));
    K2 = 6 m - K1 + X; K3 = 6 K2 - m + X;K4 = 6 K3 - K2 + X;
    o = overTri[m*K1]; tt[[1,K1+1]] =highTri[m*K1];
    tt[[2,K1+1]] = highTri[m*K2-o];tt[[3,K1+1]] = highTri[K2*K3-o];tt[[4,K1+1]] = highTri[K3*K4-o];
    K1++];k = 1;
    While[k<13,z = 1; xx = 99; While[z<5 && xx == 99,
    If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,Break[]];
    If[z == 1,t = -tt[[z,k]]-1;tt[[z,k]] = t,s = -tt[[z-1,k]]-1;tt[[z-1,k]]=s;t =-tt[[z,k]]-1];tt[[z,k]] = t;
    w = 1;While[w<5 && xx == 99,If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[]];If[w==z,w++];
    t=-tt[[w,k]] - 1;tt[[w,k]]=t;If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[],
    t = -tt[[w,k]] - 1];tt[[w,k]] = t;w++];z++];cc = tt[[1,k]] -6 tt[[2,k]] + tt[[3,k]];p = 5;While[p < 14-k,
    tt[[p,k]] = 6 tt[[p-1,k]] - tt[[p-2,k]] + cc;p++]; k++];
    a=1;list2 = Reap[While[a<12, b=a; While[b>4,Sow[0];b--];While[b>0, Sow[tt[[b, a+1-b]]]; b--]; a++]][[2, 1]];list2

A143608 A005319 and A002315 interleaved.

Original entry on oeis.org

0, 1, 4, 7, 24, 41, 140, 239, 816, 1393, 4756, 8119, 27720, 47321, 161564, 275807, 941664, 1607521, 5488420, 9369319, 31988856, 54608393, 186444716, 318281039, 1086679440, 1855077841, 6333631924, 10812186007, 36915112104, 63018038201, 215157040700
Offset: 0

Views

Author

Originally submitted by Clark Kimberling, Aug 27 2008. Merged with an essentially identical sequence submitted by Kenneth J Ramsey, Jun 01 2012, by N. J. A. Sloane, Aug 02 2012

Keywords

Comments

Also, numerators of the lower principal and intermediate convergents to 2^(1/2). The lower principal and intermediate convergents to 2^(1/2), beginning with 1/1, 4/3, 7/5, 24/17, 41/29, form a strictly increasing sequence; essentially, numerators=A143608 and denominators=A079496.
Sequence a(n) such that a(2*n) = sqrt(2*A001108(2*n)) and a(2*n+1) = sqrt(A001108(2*n+1)).
For n > 0, a(n) divides A******(k+1,n+1)-A******(k,n+1) where A****** is any one of A182431, A182439, A182440, A182441 and k is any nonnegative integer.
If p is a prime of the form 8*r +/- 3 then a(p+1) == 0 (mod p); if p is a prime of the form 8*r +/- 1 then a(p-1) == 0 (mod p).
Numbers n such that sqrt(floor(n^2/2 + 1)) is an integer. The integer square roots are given by A079496. - Richard R. Forberg, Aug 01 2013
From Peter Bala, Mar 23 2018: (Start)
Define a binary operation o on the real numbers by x o y = x*sqrt(1 + y^2) + y*sqrt(1 + x^2). The operation o is commutative and associative with identity 0. Then we have
a(2*n + 1) = 1 o 1 o ... o 1 (2*n + 1 terms) and
a(2*n) = sqrt(2)*(1 o 1 o ... o 1) (2*n terms). Cf. A084068.
This is a fourth-order divisibility sequence. Indeed, a(2*n) = sqrt(2)*U(2*n) and a(2*n+1) = U(2*n+1), where U(n) is the Lehmer sequence [Lehmer, 1930] defined by the recurrence U(n) = 2*sqrt(2)*U(n-1) - U(n-2) with U(0) = 0 and U(1) = 1. The solution to the recurrence is U(n) = (1/2)*( (sqrt(2) + 1)^n - (sqrt(2) - 1)^n ). (End)

References

  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.

Crossrefs

Programs

  • Magma
    I:=[0,1,4,7]; [n le 4 select I[n] else 6*Self(n-2) - Self(n-4): n in [1..30]]; // G. C. Greubel, Mar 27 2018
  • Maple
    A143608 := proc(n)
        option remember;
        if n <= 3 then
            op(n+1,[0,1,4,7]) ;
        else
            6*procname(n-2)-procname(n-4) ;
        end if;
    end proc: # R. J. Mathar, Jul 22 2012
  • Mathematica
    a = -4; b = -1; Reap[While[b<2000000000, t = 4*b-a; Sow[t]; a=b; b=t; t = 2*b-a; Sow[t]; a=b; b=t]][[2,1]]
    CoefficientList[Series[x*(1 + 4*x + x^2)/(1 - 6*x^2 + x^4), {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 24 2014 *)
    LinearRecurrence[{0, 6, 0, -1}, {0, 1, 4, 7}, 31] (* Jean-François Alcover, Sep 21 2017 *)
  • PARI
    a(n)=([0,1,0,0;0,0,1,0;0,0,0,1;-1,0,6,0]^n*[0;1;4;7])[1,1] \\ Charles R Greathouse IV, Jun 11 2015
    
  • PARI
    concat(0, Vec(x*(1+4*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)) + O(x^50))) \\ Colin Barker, Mar 27 2016
    

Formula

a(2*n) = (a(2*n - 1) + a(2*n + 1))/2.
a(2*n + 1) = (a(2*n) + a(2*n + 2))/4.
a(2*n) = 4*A001109(n).
a(2*n + 1) = 4*A001109(n) + A001541(n).
From Colin Barker, Jun 29 2012: (Start)
a(n) = 6*a(n-2) - a(n-4).
G.f.: x*(1 + 4*x + x^2)/((1 + 2*x - x^2)*(1 - 2*x - x^2)) = x*(1 + 4*x + x^2)/(1 - 6*x^2 + x^4). (End)
2*a(n) = A078057(n) - A123335(n-1). - R. J. Mathar, Jul 04 2012
a(2n) = A005319(n); a(2n+1) = A002315(n). - R. J. Mathar, Jul 17 2009
a(n)*a(n+1) + 1 = A001653(n+1). - Charlie Marion, Dec 11 2012
a(n) = (((-2 - sqrt(2) + (-1)^n * (-2+sqrt(2))) * ((-1+sqrt(2))^n - (1+sqrt(2))^n)))/(4*sqrt(2)). - Colin Barker, Mar 27 2016
a(n) = A084068(n) - A079496(n). - César Aguilera, Feb 14 2023

A182439 Table a(k,i), read by antidiagonals, in which the n-th row comprises A214206(n) in position 0 followed by a second order recursive series G in which each product G(i)*G(i+1) lies in the same row of A001477 (interpreted as a square array - see below).

Original entry on oeis.org

0, 0, 4, 14, 1, 7, 110, 14, 2, 8, 672, 95, 14, 3, 10, 3948, 568, 84, 14, 4, 11, 23042, 3325, 492, 81, 14, 5, 12, 134330, 19394, 2870, 472, 74, 14, 6, 13, 782964, 113051, 16730, 2751, 424, 71, 14, 7, 14, 4563480, 658924, 97512, 16034, 2464, 404, 68, 14, 8, 15
Offset: 0

Views

Author

Kenneth J Ramsey, Apr 28 2012

Keywords

Comments

This is a square array related to the square array of nonnegative integers, A001477. Each row k contains the positive argument of the largest triangular number equal to or less than 14*k in column 0 and a corresponding 2nd-order recursive sequence G(k) in the rest of the row. Each second-order recursive series term G(i) corresponds to a(k,i+1). If the product 14*k appears in row "r" of the square array A001477, then the product of adjacent terms G(i)*G(i+1), if greater than (r^2 + 3*r - 2)/2, is always in row "r" of square array A001477. If the product is less than (r^2 + 3*r -2)/2 then assuming the row can take negative indices, the product can still be said to lie in the same row r. For instance, 0, 1, 3, and 6 are each a triangular number and appear as the first 4 terms of row 0 of square array A001477. Note that in the next row and to the left of the 1, 3, and 6 are 2, 4 and 7 so going down a row and to the left in the square array increases the value by 1. Going down to the next row and to the left again would be 3, 5, and 8 so 3 which is 2 more than 1 would be in row 2 if that row were made to take the indices (2,-1).
A property of this table is that a(k+1,i)-a(k,i) directly depends on the value of a(k+1,0)-a(k,0) in the same manner regardless of the value of k. For example, a(k,2+n) - a(k,2+n) = A001652(n) for n=0,1,2,3,... whereever a(k+1,0) - a(k,0) = 1.
Also, a(k+1,2+n) - a(k,2+n) is divisible by A143608(n) for n>0 for all k.

Examples

			     0,     0,    14,   110,   672,  3948, 23042,134330,782964,
     4,     1,    14,    95,   568,  3325, 19394,113051,658924,
     7,     2,    14,    84,   492,  2870, 16730, 97512,568344,
     8,     3,    14,    81,   472,  2751, 16034, 93453,544684,
    10,     4,    14,    74,   424,  2464, 14354, 83654,487564,
    11,     5,    14,    71,   404,  2345, 13658, 79595,463904,
    12,     6,    14,    68,   384,  2226, 12962, 75536,440244.
Note that 0*14, 14*110, 110*672, etc. are all triangular numbers and thus appear in row 0 of square array A001477; while, 1*14, 14*95, 95*568, 568*3325, etc. are all 4 more than a triangular number and appear in row 4 of square array A001477.
		

Crossrefs

Programs

  • Maple
    A182439 := proc(n,k)
            if k = 0 then
                    A003056(14*n) ;
            elif k = 1 then
                    n;
            elif k = 2 then
                    14;
            else
                    6*procname(n,k-1)-procname(n,k-2)+ 28+2*n-2-4*procname(n,0) ;
            end if;
    end proc: # R. J. Mathar, Jul 09 2012
  • Mathematica
    highTri = Compile[{{S1,_Integer}}, Module[{xS0=0, xS1=S1}, While[xS1-xS0*(xS0+1)/2 > xS0, xS0++]; xS0]];
    overTri = Compile[{{S2,_Integer}}, Module[{xS0=0, xS2=S2}, While[xS2-xS0*(xS0+1)/2 > xS0, xS0++]; xS2 - (xS0*(1+xS0)/2)]];
    K1 = 0; m = 14; tab=Reap[While[K1<16,J1=highTri[m*K1]; X = 2*(m+K1-(J1*2+1)); K2 = (6 m - K1 + X); K3 = 6 K2 - m + X;
    K4 = 6 K3 - K2 + X; K5 = 6 K4 -K3 + X; K6 = 6*K5 - K4 + X; K7 = 6*K6-K5+X; K8 = 6*K7-K6+X; Sow[J1,c]; Sow[K1,d]; Sow[m,e];
    Sow[K2,f]; Sow[K3,g]; Sow[K4,h];
      Sow[K5,i]; Sow[K6,j]; Sow[K7,k]; Sow[K8,l]; K1++]][[2]]; a=1; list5 = Reap[While[a<11, b=a; While[b>0,
    Sow[tab[[b,a+1-b]]]; b--]; a++]][[2,1]]; list5
    (* Second program: *)
    A003056[n_] := Floor[(Sqrt[1 + 8n] - 1)/2];
    T[n_, k_] := Switch[k, 0, A003056[14n], 1, n, 2, 14, _, 6T[n, k-1] - T[n, k-2] + 28 + 2n - 2 - 4T[n, 0]];
    Table[T[n-k, k], {n, 0, 9}, {k, n, 0, -1}] (* Jean-François Alcover, May 09 2023, after R. J. Mathar *)

Formula

a(k,0) equals the largest m such that m*(m+1)/2 is equal to or less than 14*k, A003056(14*k).
a(k,1) = k; a(k,2) = 14.
For i > 2, a(k,i) = 6*a(k,i-1) -a (k,i-2) + G_k where G_k = 28 + 2*k - 2 - 4*a(k,0).
a(k,i) = 7*a(k,i-1)-7*a(k,i-2)+a(k,i-3). - R. J. Mathar, Jul 09 2012

A182440 Table, read by antidiagonals, in which the n-th row comprises A214206(n) in position 0 followed by a second order recursive series G in which each product G(i)*G(i+1) lies in the same row of A001477 (interpreted as a square array).

Original entry on oeis.org

0, 14, 4, 0, 14, 7, 16, 1, 14, 8, 126, 40, 2, 14, 10, 770, 287, 60, 3, 14, 11, 4524, 1730, 420, 72, 4, 14, 12, 26404, 10141, 2522, 497, 88, 5, 14, 13, 153930, 59164, 14774, 2978, 602, 100, 6, 14, 14, 897206
Offset: 0

Views

Author

Kenneth J Ramsey, Apr 28 2012

Keywords

Comments

This is a table related to A001477 interpreted as a square array of the onnegative integers (A001477). Each row k contains A003056(14*k) in column 0 and a corresponding 2nd order recursive sequence G(k) beginning at position a(k,1) such that G(i) = a(k,i+1). If the product 14*k appears in row "r" of the square array A001477, then the product of adjacent terms G(i)*G(i+1) if greater than (r^2 + 3*r - 2)/2, is always in row "r" of square array A001477.
A property of this table is that a(k+1,i)-a(k,i) directly depends on the value of a(k+1,0)-a(k,0) in the same manner regardless of the value of k. For instance, a(k+1,i+1)-a(k,i+1 = A210695(i) if a(k + 1,0) - a(k,0) = 1; while a(k+1,i+1)-a(k,i+1 = A001108(i) if a(k+1,0) - a(k,0) = 0.
A related property is that a(k+1,1+n) - a(k,1+n) is divisible by A143608(n) for all k.

Examples

			For i = 1,2,3,4 ..., a(1,i)*a(1,i+1) = 14*1,1*40,40*287,287*1730, ...; and, each product is 4 more than a triangular number and thus lies in row 4 of square array A001477.
		

Crossrefs

Programs

  • Mathematica
    highTri = Compile[{{S1,_Integer}},Module[{xS0=0,xS1=S1},
    While[xS1-xS0*(xS0+1)/2>xS0,xS0++];
    xS0]];
    overTri = Compile[{{S2,_Integer}},Module[{xS0=0,xS2=S2},
    While[xS2-xS0*(xS0+1)/2>xS0,xS0++];
    xS2 - (xS0*(1+xS0)/2)]];
    K1 = 0;
    m = 14;table=Reap[While[K1<16,J1=highTri[m*K1];X = 2*(m+K1+(J1*2+1));K2 = (6 K1 - m + X);K3 = 6 K2 - K1 + X;
    K4 =  6 K3 - K2 + X; K5 = 6 K4 -K3 + X; K6 = 6*K5 - K4 + X;K7 = 6*K6-K5+X; K8 = 6*K7-K6+X; Sow[J1,c];Sow[m,d];
    Sow[K1,e];Sow[K2,f];Sow[K3,g];Sow[K4,h];
      Sow[K5,i]; Sow[K6,j];Sow[K7,k];Sow[K8,l];
    K1++]][[2]];
    a=1;
    list5 = Reap[While[a<11,b=a;
    While[b>0,Sow[table[[b,a+1-b]]];b--];a++]][[2,1]];
    list5

Formula

a(k,0) equals the positive argument of the largest triangular number equal to or less than 14*k (= A214206(k) which = A003056(14*k)).
a(k,1) equals 14; a(k,2) = k.
For i > 2, a(k,i) = 6*a(k,i-1) -a (k,i-2) + G_k where G_k is a constant equal to 28 + 2*k + 2 + 4*A214206(k).

A212329 Expansion of x*(5+x)/(1-7*x+7*x^2-x^3).

Original entry on oeis.org

0, 5, 36, 217, 1272, 7421, 43260, 252145, 1469616, 8565557, 49923732, 290976841, 1695937320, 9884647085, 57611945196, 335787024097, 1957110199392, 11406874172261, 66484134834180, 387497934832825, 2258503474162776, 13163522910143837, 76722633986700252
Offset: 1

Views

Author

Kenneth J Ramsey, May 14 2012

Keywords

Comments

Table of differences re Table A182441.
This is a sequence of differences between rows k and k+1 of table A182441. That is if A182441(k+1,0)-A182441(k,0) = 1, a(n) = A182441(k+1,n+1) - A182441(k,n+1) for n = 0 to 3. The remainder of the sequence is a continuation using the recursive formula D(n) = 6D(n-1)- D(n-2) + 6.
It appears that for n > 0, a(n) is divisible by A213005(n).
It appears that if p is a prime of the form 8*r +/- 1 then a(p-1) == 0 (mod p), and that if p is a prime of the form 8*r +/- 3 then a(p+1) == 0 (mod p).

Crossrefs

Programs

  • Mathematica
    m = 12; n = 1; c = 0;
    list3 = Reap[While[c < 22, t = 6 n - m + 6; Sow[t];m = n; n = t;c++]][[2,1]]
    CoefficientList[ Series[x (5 + x)/(1 - 7x + 7x^2 - x^3), {x, 0, 20}], x] (* or *)
    LinearRecurrence[{7, -7, 1}, {0, 5, 36}, 21] (* Robert G. Wilson v, Jun 24 2014 *)
  • PARI
    concat(0, Vec(x^2*(5+x)/((1-x)*(1-6*x+x^2)) + O(x^40))) \\ Colin Barker, Mar 05 2016

Formula

a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3).
From Colin Barker, Mar 05 2016: (Start)
a(n) = (-6+(5-3*sqrt(2))*(3+2*sqrt(2))^n + (3-2*sqrt(2))^n*(5+3*sqrt(2)))/4.
G.f.: x*(5+x) / ((1-x)*(1-6*x+x^2)).
(End)
Showing 1-5 of 5 results.