A060921
Bisection of Fibonacci triangle A037027: odd-indexed members of column sequences of A037027 (not counting leading zeros).
Original entry on oeis.org
1, 3, 2, 8, 10, 3, 21, 38, 22, 4, 55, 130, 111, 40, 5, 144, 420, 474, 256, 65, 6, 377, 1308, 1836, 1324, 511, 98, 7, 987, 3970, 6666, 6020, 3130, 924, 140, 8, 2584, 11822, 23109, 25088, 16435, 6588, 1554, 192, 9
Offset: 0
{1}; {3,2}; {8,10,3}; {21,38,22,4}; ...; pFo(2,x) = 2*(1-x).
A061176
Coefficients of polynomials ( (1 -x +sqrt(x))^n + (1 -x -sqrt(x))^n )/2.
Original entry on oeis.org
1, 1, -1, 1, -1, 1, 1, 0, 0, -1, 1, 2, -5, 2, 1, 1, 5, -15, 15, -5, -1, 1, 9, -30, 41, -30, 9, 1, 1, 14, -49, 77, -77, 49, -14, -1, 1, 20, -70, 112, -125, 112, -70, 20, 1, 1, 27, -90, 126, -117, 117, -126, 90, -27, -1, 1, 35, -105, 90, 45, -131, 45, 90, -105, 35, 1
Offset: 0
The first few polynomials are:
pFe(0,x) = 1.
pFe(1,x) = 1 - x.
pFe(2,x) = 1 - x + x^2.
pFe(3,x) = 1 - 0*x + 0*x^2 - x^3.
pFe(4,x) = 1 + 2*x - 5*x^2 + 2*x^3 + x^4.
Number triangle begins as:
1;
1, -1;
1, -1, 1;
1, 0, 0, -1;
1, 2, -5, 2, 1;
1, 5, -15, 15, -5, -1;
1, 9, -30, 41, -30, 9, 1;
1, 14, -49, 77, -77, 49, -14, -1;
1, 20, -70, 112, -125, 112, -70, 20, 1;
-
A061176:= func< n,k | (&+[(-1)^(k+j)*Binomial(n,2*j)*Binomial(n-2*j,k-j): j in [0..k]]) >;
[A061176(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 06 2021
-
T[n_, k_]:= Sum[(-1)^(k+j)*Binomial[n, 2*j]*Binomial[n-2*j, k-j], {j,0,k}];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
-
def A061176(n,k): return sum((-1)^(k+j)*binomial(n,2*j)*binomial(n-2*j,k-j) for j in (0..k))
flatten([[A061176(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 06 2021
A061182
Third column (m=2) of triangle A060921 (bisection of Fibonacci triangle, odd part).
Original entry on oeis.org
3, 22, 111, 474, 1836, 6666, 23109, 77378, 252177, 804228, 2519640, 7777860, 23709783, 71501422, 213619683, 633011454, 1862264196, 5443487406, 15820188729, 45739697306, 131624104677, 377157259848
Offset: 0
A061183
One-fourth of the fourth (m=3) column of triangle A060921 (bisection of Fibonacci triangle, odd part).
Original entry on oeis.org
1, 10, 64, 331, 1505, 6272, 24540, 91527, 328768, 1145650, 3893630, 12958400, 42364427, 136389128, 433263360, 1360269093, 4226523495, 13011186624, 39722775806, 120366164765, 362255552384, 1083513943700
Offset: 0
-
CoefficientList[Series[((1-x^3)-2(x-x^2))/(1-3x+x^2)^4,{x,0,30}],x] (* or *) LinearRecurrence[{12,-58,144,-195,144,-58,12,-1},{1,10,64,331,1505,6272,24540,91527},30] (* Harvey P. Dale, Jun 17 2022 *)
A061184
Fifth (m=4) column of triangle A060921 (bisection of Fibonacci triangle, odd part).
Original entry on oeis.org
5, 65, 511, 3130, 16435, 77645, 339535, 1399478, 5504650, 20845300, 76495450, 273381350, 955187033, 3272875935, 11024814945, 36584603310, 119796766005, 387639512331, 1240994295715, 3934750789180
Offset: 0
A061185
One half of sixth (m=5) column of triangle A060921 (bisection of Fibonacci triangle, odd part).
Original entry on oeis.org
3, 49, 462, 3294, 19715, 104517, 506646, 2292310, 9817920, 40210800, 158677370, 606790410, 2258770689, 8214432303, 29269938510, 102434633406, 352793077413, 1197764971911, 4014411070092
Offset: 0
Showing 1-6 of 6 results.
Comments