cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A060921 Bisection of Fibonacci triangle A037027: odd-indexed members of column sequences of A037027 (not counting leading zeros).

Original entry on oeis.org

1, 3, 2, 8, 10, 3, 21, 38, 22, 4, 55, 130, 111, 40, 5, 144, 420, 474, 256, 65, 6, 377, 1308, 1836, 1324, 511, 98, 7, 987, 3970, 6666, 6020, 3130, 924, 140, 8, 2584, 11822, 23109, 25088, 16435, 6588, 1554, 192, 9
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Row sums give A002450. Column sequences (without leading zeros) give for m=0..5: A001906, 2*A001870, A061182, 4*A061183, A061184, 2*A061185.
Companion triangle (odd-indexed members) A060920.

Examples

			{1}; {3,2}; {8,10,3}; {21,38,22,4}; ...; pFo(2,x) = 2*(1-x).
		

Formula

a(n, m) = A037027(2*n+1-m, m).
a(n, m) = (2*(n-m+1)*A060920(n, m-1)+2*(2*n+1)*a(n-1, m-1))/(5*m), n >= m>0; a(n, 0) := S(n, 3)=A001906(n+1) with Chebyshev's S(n, x) polynomials A049310; else 0.
G.f. for column m >= 0: x^m*pFo(m+1, x)/(1-3*x+x^2)^(m+1), where pFo(n, x) := Sum_{m=0..n-1} A061177(n-1, m)*x^m (row polynomials of signed triangle A061177).
G.f.: 1/(1 - (3+2*y)*x + (1+y)^2*x^2). - Vladeta Jovovic, Oct 11 2003

A061183 One-fourth of the fourth (m=3) column of triangle A060921 (bisection of Fibonacci triangle, odd part).

Original entry on oeis.org

1, 10, 64, 331, 1505, 6272, 24540, 91527, 328768, 1145650, 3893630, 12958400, 42364427, 136389128, 433263360, 1360269093, 4226523495, 13011186624, 39722775806, 120366164765, 362255552384, 1083513943700
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Numerator polynomial of g.f. is (1/4) * Sum_{m=0..3} A061177(3,m)*x^m.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[((1-x^3)-2(x-x^2))/(1-3x+x^2)^4,{x,0,30}],x] (* or *) LinearRecurrence[{12,-58,144,-195,144,-58,12,-1},{1,10,64,331,1505,6272,24540,91527},30] (* Harvey P. Dale, Jun 17 2022 *)

Formula

a(n) = A060921(n+3, 3)/4.
G.f.: ((1-x^3)-2*(x-x^2))/(1-3*x+x^2)^4.
Showing 1-2 of 2 results.