A060920
Bisection of Fibonacci triangle A037027: even-indexed members of column sequences of A037027 (not counting leading zeros).
Original entry on oeis.org
1, 2, 1, 5, 5, 1, 13, 20, 9, 1, 34, 71, 51, 14, 1, 89, 235, 233, 105, 20, 1, 233, 744, 942, 594, 190, 27, 1, 610, 2285, 3522, 2860, 1295, 315, 35, 1, 1597, 6865, 12473, 12402, 7285, 2534, 490, 44, 1, 4181, 20284, 42447, 49963, 36122, 16407, 4578, 726, 54, 1
Offset: 0
Triangle begins as:
1;
2, 1;
5, 5, 1;
13, 20, 9, 1;
34, 71, 51, 14, 1;
89, 235, 233, 105, 20, 1;
233, 744, 942, 594, 190, 27, 1;
610, 2285, 3522, 2860, 1295, 315, 35, 1;
1597, 6865, 12473, 12402, 7285, 2534, 490, 44, 1;
4181, 20284, 42447, 49963, 36122, 16407, 4578, 726, 54, 1;
10946, 59155, 140109, 190570, 163730, 91959, 33705, 7776, 1035, 65, 1;
-
A060920:= func< n,k | (&+[Binomial(2*n-k-j, j)*Binomial(2*n-k-2*j, k): j in [0..2*n-k]]) >;
[A060920(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 06 2021
-
A060920[n_, k_]:= Sum[Binomial[2*n-k-j, j]*Binomial[2*n-k-2*j, k], {j,0,2*n-k}];
Table[A060920[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
-
def A060920(n,k): return sum(binomial(2*n-k-j, j)*binomial(2*n-k-2*j, k) for j in (0..2*n-k))
flatten([[A060920(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 06 2021
A061177
Coefficients of polynomials ( (1 -x +sqrt(x))^(n+1) - (1 -x -sqrt(x))^(n+1) )/(2*sqrt(x)).
Original entry on oeis.org
1, 2, -2, 3, -5, 3, 4, -8, 8, -4, 5, -10, 11, -10, 5, 6, -10, 6, -6, 10, -6, 7, -7, -14, 29, -14, -7, 7, 8, 0, -56, 120, -120, 56, 0, -8, 9, 12, -126, 288, -365, 288, -126, 12, 9, 10, 30, -228, 540, -770, 770, -540, 228, -30, -10, 11, 55, -363, 858
Offset: 0
The first few polynomials are:
pFo(0, x) = 1.
pFo(1, x) = 2 - 2*x.
pFo(2, x) = 3 - 5*x + 3*x^2.
pFo(3, x) = 4 - 8*x + 8*x^2 - 4*x^3.
pFo(4, x) = 5 - 10*x + 11*x^2 - 10*x^3 + 5*x^4.
pFo(5, x) = 6 - 10*x + 6*x^2 - 6*x^3 + 10*x^4 - 6*x^5.
Number triangle begins as:
1;
2, -2;
3, -5, 3;
4, -8, 8, -4;
5, -10, 11, -10, 5;
6, -10, 6, -6, 10, -6;
7, -7, -14, 29, -14, -7, 7;
8, 0, -56, 120, -120, 56, 0, -8;
9, 12, -126, 288, -365, 288, -126, 12, 9;
10, 30, -228, 540, -770, 770, -540, 228, -30, -10;
-
A061177:= func< n,k | (&+[(-1)^(k+j)*Binomial(n+1,2*j+1)*Binomial(n-2*j,k-j): j in [0..k]]) >;
[A061177(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 06 2021
-
T[n_, k_]:= Sum[(-1)^(k-j)*Binomial[n+1, 2*j+1]*Binomial[n-2*j, k-j], {j,0,k}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
-
def A061177(n,k): return sum((-1)^(k+j)*binomial(n+1,2*j+1)*binomial(n-2*j,k-j) for j in (0..k))
flatten([[A061177(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 06 2021
A180957
Generalized Narayana triangle for (-1)^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, -2, -5, -2, 1, 1, -5, -15, -15, -5, 1, 1, -9, -30, -41, -30, -9, 1, 1, -14, -49, -77, -77, -49, -14, 1, 1, -20, -70, -112, -125, -112, -70, -20, 1, 1, -27, -90, -126, -117, -117, -126, -90, -27, 1, 1, -35, -105, -90, 45, 131, 45, -90, -105, -35, 1
Offset: 0
Triangle begins
1;
1, 1;
1, 1, 1;
1, 0, 0, 1;
1, -2, -5, -2, 1;
1, -5, -15, -15, -5, 1;
1, -9, -30, -41, -30, -9, 1;
1, -14, -49, -77, -77, -49, -14, 1;
1, -20, -70, -112, -125, -112, -70, -20, 1;
1, -27, -90, -126, -117, -117, -126, -90, -27, 1;
1, -35, -105, -90, 45, 131, 45, -90, -105, -35, 1;
-
A180957:= func< n,k | (&+[ (-1)^(k-j)*Binomial(n, j)*Binomial(n-j, 2*(k-j)) : j in [0..n]]) >;
[A180957(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 06 2021
-
T[n_, k_]:= Sum[(-1)^(k-j)*Binomial[n, j]*Binomial[n-j, 2*(k-j)], {j,0,n}];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
-
def A180957(n,k): return sum( (-1)^(k+j)*binomial(n,j)*binomial(n-j, 2*(k-j)) for j in (0..n))
flatten([[A180957(n,k) for k in (0..n)] for n in [0..15]]) # G. C. Greubel, Apr 06 2021
A061178
Third column (m=2) of triangle A060920 (bisection of Fibonacci triangle, even part).
Original entry on oeis.org
1, 9, 51, 233, 942, 3522, 12473, 42447, 140109, 451441, 1426380, 4434420, 13599505, 41225349, 123723351, 368080793, 1086665562, 3186317718, 9286256393, 26916587307, 77634928209, 222920650081
Offset: 0
A061179
Fourth column (m=3) of triangle A060920 (bisection of Fibonacci triangle, even part).
Original entry on oeis.org
1, 14, 105, 594, 2860, 12402, 49963, 190570, 696787, 2463300, 8472280, 28481220, 93914325, 304597382, 973877245, 3075011478, 9602753412, 29695165110, 91026167999, 276833858530, 835933445799, 2507876305416
Offset: 0
A061180
Fifth column (m=4) of triangle A060920 (bisection of Fibonacci triangle, even part).
Original entry on oeis.org
1, 20, 190, 1295, 7285, 36122, 163730, 693835, 2790100, 10758050, 40075630, 145052300, 512347975, 1772132390, 6018885570, 20118711993, 66306068715, 215797999830, 694463680160, 2212291834405, 6982976069384
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (15, -95, 330, -685, 873, -685, 330, -95, 15, -1).
-
CoefficientList[Series[((1-x^5)+5(x-x^4)-15(x^2-x^3))/(1-3x+x^2)^5,{x,0,40}],x] (* or *) LinearRecurrence[{15,-95,330,-685,873,-685,330,-95,15,-1},{1,20,190,1295,7285,36122,163730,693835,2790100,10758050},30] (* Harvey P. Dale, Sep 01 2022 *)
A061181
Sixth column (m=5) of triangle A060920 (bisection of Fibonacci triangle, even part).
Original entry on oeis.org
1, 27, 315, 2534, 16407, 91959, 464723, 2171850, 9546570, 39940460, 160437690, 622844730, 2348773525, 8638447293, 31086197469, 109744786482, 380920122009, 1302304276665, 4392297900647
Offset: 0
Showing 1-7 of 7 results.
Comments