cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Udita Katugampola

Udita Katugampola's wiki page.

Udita Katugampola has authored 31 sequences. Here are the ten most recent ones:

A223536 Coefficients of (x^(1/6)*d/dx)^n for positive integer n.

Original entry on oeis.org

1, 1, 6, -2, 9, 8, 6, 13, 36, 36, -42, 70, -75, 180, 108, 798, -1162, 945, -630, 1620, 648, 3192, -4284, 3052, -1575, 630, -2268, -648, 92568, -117684, 77588, -35637, 12600, -1512, 18144, 3888, 1573656
Offset: 1

Author

Udita Katugampola, Apr 18 2013

Keywords

Comments

These are generalized Stirling numbers.

Examples

			1;
1, 6;
-2, 9, 8;
6, 13, 36, 36;
-42, 70, -75, 180, 108;
798, -1162, 945, -630, 1620, 648;
		

Crossrefs

Programs

  • Maple
    # This will generate the sequence as coefficients of pseudo polynomials
    # up to a constant multiple.
    a[0] := f(x):
    for i to 10 do
    a[i] := simplify(x^(1/6)*(diff(a[i-1],x$1)))
    end do;

Formula

G.f.: exp(((1+5/6*x*y)^(6/5)-1)/x).

A223535 Coefficients of (x^(1/5)*d/dx)^n for positive integer n.

Original entry on oeis.org

1, 1, 5, -3, 15, 25, 21, -45, 150, 125, -231, 375, -375, 1250, 625, 693, -981, 750, -375, 1875, 625, -13167, 17199, -11655, 5250, 13125, 3125, 302841, -375417, 237510, -100275, 26250, 26250, 87500, 15625, 8176707, -9773379, 5914755, -2390850, 685125, -78750
Offset: 1

Author

Udita Katugampola, Apr 18 2013

Keywords

Comments

These are generalized Stirling numbers.

Examples

			1;
1, 5;
-3, 15, 25;
21, -45, 150, 125;
-231, 375, -375, 1250, 625;
693, -981, 750, -375, 1875, 625;
		

Crossrefs

Programs

  • Maple
    # This will generate the sequence as coefficients of pseudo polynomials
    # up to a constant multiple.
    a[0] := f(x):
    for i to 10 do
    a[i] := simplify(x^(1/5)*(diff(a[i-1],x$1)))
    end do;

Formula

G.f.: exp(((1+4/5*x*y)^(5/4)-1)/x).

A223534 Coefficients of (x^(1/4)*d/dx)^n for n positive integer.

Original entry on oeis.org

1, 1, 4, -1, 6, 8, 5, -10, 48, 32, -10, 15, -10, 80, 32, 110, -145, 90, 40, 480, 128, -770, 945, -560, 140, 560, 1344, 256, -13090, 15365, -8820, 2940, -6272, -7168, -1024, 65450, -74550, 41825, -14700, 2940, -13440, -9216, -1024, 1505350, -1678250, 925575
Offset: 1

Author

Udita Katugampola, Apr 18 2013

Keywords

Comments

These are generalized Stirling numbers.

Examples

			1;
1, 4;
-1, 6, 8;
5, -10, 48, 32;
-10, 15, -10, 80, 32;
110, -145, 90, 40, 480, 128;
-770, 945, -560, 140, 560, 1344, 256;
		

Crossrefs

Programs

  • Maple
    # This will generate the sequence as coefficients of pseudo polynomials
    # up to a constant multiple.
    a[0] := f(x):
    for i to 10 do
    a[i] := simplify(x^(1/4)*(diff(a[i-1],x$1)))
    end do;

Formula

G.f.: exp(((1+3/4*x*y)^(4/3)-1)/x).

A223533 Coefficients of (x^(1/3)*d/dx)^n for positive integer n.

Original entry on oeis.org

1, 1, 3, -1, 9, 9, 1, -1, 18, 9, -5, 5, 15, 90, 27, 35, -35, 225, 405, 81, -105, 105, -35, 630, 567, 81, 1155, -1155, 490, -105, 4158, 2268, 243, 15015, -15015, 6895, 945, -10206, -23814, -8748, -729, 75075, -75075, 35700, -10675, 2835, -945, 34020, 41310, 10935, 729
Offset: 1

Author

Udita Katugampola, Apr 18 2013

Keywords

Comments

These are generalized Stirling numbers.

Examples

			1;
1, 3;
-1, 9, 9;
1, -1, 18, 9;
-5, 5, 15, 90, 27;
35, -35, 225, 405, 81;
-105, 105, 630, 567, -35, 81;
1155, -1155, 630, 4158, 490, 2268, -105, 243;
		

Crossrefs

Programs

  • Maple
    # This will generate the sequence as coefficients of pseudo polynomials
    # up to a constant multiple.
    a[0] := f(x):
    for i to 10 do
    a[i] := simplify(x^(1/3)*(diff(a[i-1],x$1)))
    end do;

Formula

G.f.: exp(((1+2/3*x*y)^(3/2)-1)/x).

A223526 Triangle S(n,k) by rows: coefficients of 3^(n/2)*(x^(2/3)*d/dx)^n when n=0,2,4,6,...

Original entry on oeis.org

1, 1, 3, 4, 24, 9, 28, 252, 189, 27, 280, 3360, 3780, 1080, 81, 3640, 54600, 81900, 35100, 5265, 243, 58240, 1048320, 1965600, 1123200, 252720, 23328, 729, 1106560, 23237760, 52284960, 37346400, 11203920, 1551312, 96957, 2187, 24344320, 584263680, 1533692160
Offset: 1

Author

Udita Katugampola, Mar 18 2013

Keywords

Examples

			Triangle begins:
1;
1, 3;
4, 24, 9;
28, 252, 189, 27;
280, 3360, 3780, 1080, 81;
3640, 54600, 81900, 35100, 5265, 243;
58240, 1048320, 1965600, 1123200, 252720, 23328, 729;
1106560, 23237760, 52284960, 37346400, 11203920, 1551312, 96957, 2187;
24344320, 584263680, 1533692160, 1314593280, 492972480, 91010304, 8532216, 384912, 6561;
		

Crossrefs

Programs

  • Maple
    a[0]:= f(x):
    for i from 1 to 20 do
    a[i] := simplify(3^((i+1)mod 2)*x^(((i+1)mod 2+1)/3)*(diff(a[i-1],x$1 )));
    end do:
    for j from 1 to 10 do
    b[j]:=a[2j];
    end do;

Formula

T(n,0) = A007559(n) and T(n,n) = A000244(n) for all n>=0

A223531 Triangle S(n,k) by rows: coefficients of 6^((n-1)/2)*(x^(1/6)*d/dx)^n when n=1,3,5,...

Original entry on oeis.org

1, 7, 6, 91, 156, 36, 1729, 4446, 2052, 216, 43225, 148200, 102600, 21600, 1296, 1339975, 5742750, 5301000, 1674000, 200880, 7776, 49579075, 254978100, 294205500, 123876000, 22297680, 1726272, 46656, 2131900225, 12791401350, 17711171100, 9321669000
Offset: 1

Author

Udita Katugampola, Mar 23 2013

Keywords

Examples

			Triangle begins:
1;
7, 6;
91, 156, 36;
1729, 4446, 2052, 216;
43225, 148200, 102600, 21600, 1296;
1339975, 5742750, 5301000, 1674000, 200880, 7776;
49579075, 254978100, 294205500, 123876000, 22297680, 1726272, 46656;
2131900225, 12791401350, 17711171100, 9321669000, 2237200560, 259803936, 14043456, 279936;
		

Programs

  • Maple
    a[0]:= f(x):
    for i from 1 to 20 do
    a[i] := simplify(6^((i+1)mod 2)*x^((4((i+1)mod 2)+1)/6)*(diff(a[i-1],x$1 )));
    end do:
    for j from 1 to 10 do
    b[j]:=a[2j-1];
    end do;

A223529 Triangle S(n,k) by rows: coefficients of 5^((n-1)/2)*(x^(1/5)*d/dx)^n when n=1,3,5,...

Original entry on oeis.org

1, 6, 5, 66, 110, 25, 1056, 2640, 1200, 125, 22176, 73920, 50400, 10500, 625, 576576, 2402400, 2184000, 682500, 81250, 3125, 17873856, 89369280, 101556000, 42315000, 7556250, 581250, 15625, 643458816, 3753509760, 5118422400, 2665845000, 634725000
Offset: 1

Author

Udita Katugampola, Mar 23 2013

Keywords

Examples

			Triangle begins:
1;
6, 5;
66, 110, 25;
1056, 2640, 1200, 125;
22176, 73920, 50400, 10500, 625;
576576, 2402400, 2184000, 682500, 81250, 3125;
17873856, 89369280, 101556000, 42315000, 7556250, 581250, 15625;
643458816, 3753509760, 5118422400, 2665845000, 634725000, 73237500, 3937500, 78125;
		

Programs

  • Maple
    a[0]:= f(x):
    for i from 1 to 20 do
    a[i] := simplify(5^((i+1)mod 2)*x^((3((i+1)mod 2)+1)/5)*(diff(a[i-1],x$1 )));
    end do:
    for j from 1 to 10 do
    b[j]:=a[2j-1];
    end do;

A223527 Triangle S(n,k) by rows: coefficients of 4^((n-1)/2)*(x^(1/4)*d/dx)^n when n=1,3,5,...

Original entry on oeis.org

1, 5, 4, 45, 72, 16, 585, 1404, 624, 64, 9945, 31824, 21216, 4352, 256, 208845, 835380, 742560, 228480, 26880, 1024, 5221125, 25061400, 27846000, 11424000, 2016000, 153600, 4096, 151412625, 847910700, 1130547600, 579768000, 136416000, 15590400, 831488, 16384
Offset: 1

Author

Udita Katugampola, Mar 23 2013

Keywords

Examples

			Triangle begins:
1;
5, 4;
45, 72, 16;
585, 1404, 624, 64;
9945, 31824, 21216, 4352, 256;
208845, 835380, 742560, 228480, 26880, 1024;
5221125, 25061400, 27846000, 11424000, 2016000, 153600, 4096;
151412625, 847910700, 1130547600, 579768000, 136416000, 15590400, 831488, 16384;
		

Programs

  • Maple
    a[0]:= f(x):
    for i from 1 to 20 do
    a[i] := simplify(4^((i+1)mod 2)*x^((2((i+1)mod 2)+1)/4)*(diff(a[i-1],x$1 )));
    end do:
    for j from 1 to 10 do
    b[j]:=a[2j-1];
    end do;

A223525 Triangle S(n,k) by rows: coefficients of 3^((n-1)/2)*(x^(1/3)*d/dx)^n when n=1,3,5,...

Original entry on oeis.org

1, 4, 3, 4, 24, 9, 28, 252, 189, 27, 280, 3360, 3780, 1080, 81, 3640, 54600, 81900, 35100, 5265, 243, 1106560, 4979520, 5335200, 2134080, 369360, 27702, 729, 24344320, 127807680, 164324160, 82162080, 18960480, 2133054, 112266, 2187, 608608000
Offset: 1

Author

Udita Katugampola, Mar 18 2013

Keywords

Examples

			Triangle begins:
1;
4, 3;
4, 24, 9;,
28, 252, 189, 27;
280, 3360, 3780, 1080, 81;
3640, 54600, 81900, 35100, 5265, 243;
1106560, 4979520, 5335200, 2134080, 369360, 27702, 729;
24344320, 127807680, 164324160, 82162080, 18960480, 2133054, 112266, 2187;
		

Crossrefs

Programs

  • Maple
    a[0]:= f(x):
    for i from 1 to 20 do
    a[i] := simplify(3^((i+1)mod 2)*x^(((i+1)mod 2+1)/3)*(diff(a[i-1],x$1 )));
    end do:
    for j from 1 to 10 do
    b[j]:=a[2j-1];
    end do;

A223532 Triangle S(n,k) by rows: coefficients of 6^(n/2)*(x^(5/6)*d/dx)^n when n=0,2,4,6,...

Original entry on oeis.org

1, 1, 6, 7, 84, 36, 91, 1638, 1404, 216, 1729, 41496, 53352, 16416, 1296, 43225, 1296750, 2223000, 1026000, 162000, 7776, 1339975, 48239100, 103369500, 63612000, 15066000, 1446336, 46656, 49579075, 2082321150, 5354540100, 4118877000, 1300698000, 187300512
Offset: 1

Author

Udita Katugampola, Mar 23 2013

Keywords

Examples

			Triangle begins:
1;
1, 6;
7, 84, 36;
91, 1638, 1404, 216;
1729, 41496, 53352, 16416, 1296;
43225, 1296750, 2223000, 1026000, 162000, 7776;
1339975, 48239100, 103369500, 63612000, 15066000, 1446336, 46656;
49579075, 2082321150, 5354540100, 4118877000, 1300698000, 187300512, 12083904, 279936;
		

Programs

  • Maple
    a[0]:= f(x):
    for i from 1 to 20 do
    a[i] := simplify(6^((i+1)mod 2)*x^((4((i+1)mod 2)+1)/6)*(diff(a[i-1],x$1 )));
    end do:
    for j from 1 to 10 do
    b[j]:=a[2j];
    end do;