cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A223536 Coefficients of (x^(1/6)*d/dx)^n for positive integer n.

Original entry on oeis.org

1, 1, 6, -2, 9, 8, 6, 13, 36, 36, -42, 70, -75, 180, 108, 798, -1162, 945, -630, 1620, 648, 3192, -4284, 3052, -1575, 630, -2268, -648, 92568, -117684, 77588, -35637, 12600, -1512, 18144, 3888, 1573656
Offset: 1

Views

Author

Udita Katugampola, Apr 18 2013

Keywords

Comments

These are generalized Stirling numbers.

Examples

			1;
1, 6;
-2, 9, 8;
6, 13, 36, 36;
-42, 70, -75, 180, 108;
798, -1162, 945, -630, 1620, 648;
		

Crossrefs

Programs

  • Maple
    # This will generate the sequence as coefficients of pseudo polynomials
    # up to a constant multiple.
    a[0] := f(x):
    for i to 10 do
    a[i] := simplify(x^(1/6)*(diff(a[i-1],x$1)))
    end do;

Formula

G.f.: exp(((1+5/6*x*y)^(6/5)-1)/x).

A223534 Coefficients of (x^(1/4)*d/dx)^n for n positive integer.

Original entry on oeis.org

1, 1, 4, -1, 6, 8, 5, -10, 48, 32, -10, 15, -10, 80, 32, 110, -145, 90, 40, 480, 128, -770, 945, -560, 140, 560, 1344, 256, -13090, 15365, -8820, 2940, -6272, -7168, -1024, 65450, -74550, 41825, -14700, 2940, -13440, -9216, -1024, 1505350, -1678250, 925575
Offset: 1

Views

Author

Udita Katugampola, Apr 18 2013

Keywords

Comments

These are generalized Stirling numbers.

Examples

			1;
1, 4;
-1, 6, 8;
5, -10, 48, 32;
-10, 15, -10, 80, 32;
110, -145, 90, 40, 480, 128;
-770, 945, -560, 140, 560, 1344, 256;
		

Crossrefs

Programs

  • Maple
    # This will generate the sequence as coefficients of pseudo polynomials
    # up to a constant multiple.
    a[0] := f(x):
    for i to 10 do
    a[i] := simplify(x^(1/4)*(diff(a[i-1],x$1)))
    end do;

Formula

G.f.: exp(((1+3/4*x*y)^(4/3)-1)/x).

A223535 Coefficients of (x^(1/5)*d/dx)^n for positive integer n.

Original entry on oeis.org

1, 1, 5, -3, 15, 25, 21, -45, 150, 125, -231, 375, -375, 1250, 625, 693, -981, 750, -375, 1875, 625, -13167, 17199, -11655, 5250, 13125, 3125, 302841, -375417, 237510, -100275, 26250, 26250, 87500, 15625, 8176707, -9773379, 5914755, -2390850, 685125, -78750
Offset: 1

Views

Author

Udita Katugampola, Apr 18 2013

Keywords

Comments

These are generalized Stirling numbers.

Examples

			1;
1, 5;
-3, 15, 25;
21, -45, 150, 125;
-231, 375, -375, 1250, 625;
693, -981, 750, -375, 1875, 625;
		

Crossrefs

Programs

  • Maple
    # This will generate the sequence as coefficients of pseudo polynomials
    # up to a constant multiple.
    a[0] := f(x):
    for i to 10 do
    a[i] := simplify(x^(1/5)*(diff(a[i-1],x$1)))
    end do;

Formula

G.f.: exp(((1+4/5*x*y)^(5/4)-1)/x).
Showing 1-3 of 3 results.