A223536 Coefficients of (x^(1/6)*d/dx)^n for positive integer n.
1, 1, 6, -2, 9, 8, 6, 13, 36, 36, -42, 70, -75, 180, 108, 798, -1162, 945, -630, 1620, 648, 3192, -4284, 3052, -1575, 630, -2268, -648, 92568, -117684, 77588, -35637, 12600, -1512, 18144, 3888, 1573656
Offset: 1
Examples
1; 1, 6; -2, 9, 8; 6, 13, 36, 36; -42, 70, -75, 180, 108; 798, -1162, 945, -630, 1620, 648;
Links
- U. N. Katugampola, Mellin Transforms of Generalized Fractional Integrals and Derivatives, Appl. Math. Comput. 257(2015) 566-580.
Programs
-
Maple
# This will generate the sequence as coefficients of pseudo polynomials # up to a constant multiple. a[0] := f(x): for i to 10 do a[i] := simplify(x^(1/6)*(diff(a[i-1],x$1))) end do;
Formula
G.f.: exp(((1+5/6*x*y)^(6/5)-1)/x).
Comments