cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Simone Severini

Simone Severini's wiki page.

Simone Severini has authored 26 sequences. Here are the ten most recent ones:

A130198 Single paradiddle. In percussion, the paradiddle is a four-note drum sticking pattern consisting of two alternating notes followed by two notes on the same hand.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1
Offset: 0

Author

Simone Severini, May 16 2007

Keywords

Comments

Also the binary expansion of the constant 5/17 = 2^(-2) + 2^(-5) + 2^(-7) + ... - R. J. Mathar, Mar 27 2009
Period 8: repeat [0, 1, 0, 0, 1, 0, 1, 1]. - Wesley Ivan Hurt, Aug 23 2015

Crossrefs

Cf. A121262, A131078. - Jaume Oliver Lafont, Mar 19 2009
Cf. A165211.

Programs

Formula

From R. J. Mathar, Mar 27 2009: (Start)
a(n) = a(n-8) = a(n-1) - a(n-4) + a(n-5).
G.f.: -x*(1+x^3-x)/((x-1)*(1+x^4)). (End)
a(n) = (1-(-1)^((n+5)*(n+6)*(n^2+11*n+32)/8))/2. - Wesley Ivan Hurt, Aug 23 2015
a(n) = A165211(n+5). - Wesley Ivan Hurt, Aug 23 2015

A126857 Maximal number of vertices in an integral circulant graph of degree n or n+1.

Original entry on oeis.org

6, 12, 30, 42, 120
Offset: 2

Author

Simone Severini, Mar 11 2007

Keywords

References

  • Nitin Saxena, Simone Severini and Igor Shparlinski, Parameters of Integral Circulant Graphs, Preprint, 2007.

A127546 a(n) = F(n)^2 + F(n+1)^2 + F(n+2)^2, where F(n) denotes the n-th Fibonacci number.

Original entry on oeis.org

2, 6, 14, 38, 98, 258, 674, 1766, 4622, 12102, 31682, 82946, 217154, 568518, 1488398, 3896678, 10201634, 26708226, 69923042, 183060902, 479259662, 1254718086, 3284894594, 8599965698, 22515002498, 58945041798, 154320122894, 404015326886, 1057725857762
Offset: 0

Author

Simone Severini, Apr 01 2007

Keywords

Comments

The following conjecture, if not already well-known, is probably easy to prove: a(n) = 3a(n-1)-a(n-2)-2(-1)^n, for n=4,5,6,... . (This has been verified up to n=1000.)

Examples

			a(2)=14 because F(2)^2+F(3)^2+F(4)^2=1+4+9=14.
		

Crossrefs

Cf. A061646.

Programs

  • Maple
    with(combinat): a:=n->fibonacci(n)^2+fibonacci(n+1)^2+fibonacci(n+2)^2: seq(a(n),n=0..32); # Emeric Deutsch, Apr 04 2007
    A000045 := proc(n) combinat[fibonacci](n) ; end: A127546 := proc(n) add( A000045(i+1)^2,i=n..n+2) ; end: for n from 1 to 33 do printf("%d, ",A127546(n)) ; od ; # R. J. Mathar, Apr 03 2007
    with(combinat): seq(4*fibonacci(n+1)^2-2*(-1)^n, n=0..29)
  • Mathematica
    Total/@(Partition[Fibonacci[Range[0,30]],3,1]^2) (* Harvey P. Dale, Oct 20 2011 *)
  • PARI
    for(n=0,10,print1(4*fibonacci(n+1)^2-2*(-1)^n,", "))

Formula

a(n) = 2*A061646(n+1) = 4*F(n+1)^2-2*(-1)^(n+1). - Emeric Deutsch, Apr 04 2007; Gary Detlefs, Nov 27 2010
a(n) = 2*(F(n)^2+F(n+1)^2+F(n)*F(n+1)). - Emeric Deutsch, Apr 04 2007
G.f.: 2(1+x-x^2)/((1+x)(1-3x+x^2)). - R. J. Mathar, Nov 25 2008

Extensions

Edited and extended by R. J. Mathar, Emeric Deutsch and John W. Layman, Apr 09 2007

A120339 a(n) = 3abc, where (a,b,c) is a Markoff triple. The first Markoff triple considered is (1,2,5) and the ordering is increasing.

Original entry on oeis.org

30, 195, 870, 1326, 9078, 29406, 37830, 62211, 188355, 426390, 998790, 1756950, 2922510, 8430270, 20031171, 33929310, 41996670, 57206526, 82401006, 137295678, 216148803, 941038566, 1152597606, 1418915886, 1879906755, 2668548675, 3870146310, 6449974275, 9365063430, 18263765550, 39154389150, 44208781350
Offset: 1

Author

Simone Severini, Jun 22 2006

Keywords

Crossrefs

Cf. A002559.

Extensions

Corrected and extended by T. D. Noe, Jan 28 2011

A117393 Number of different classes of entangling power of permutation matrices of dimension d^2, acting on a d X d (tensor product) Hilbert space.

Original entry on oeis.org

1, 2, 15, 65, 190, 447
Offset: 1

Author

Lieven Clarisse and Simone Severini, Apr 25 2006

Keywords

Comments

a(1), a(2) and a(3) were obtained via an exhaustive search; Lower bounds on a(4) through a(10) are 65, 190, 447, 890, 1603, 2675, 4200. - Lieven Clarisse, Jan 29 2017
I moved a(4)-a(6) back to the data field, even though they have not been proved. If they are deleted the sequence melts away. - N. J. A. Sloane, Jan 31 2017

Extensions

Moved terms a(4) and above to comments since those were not obtained via an exhaustive search (but believed to be correct). - Lieven Clarisse, Jan 29 2017. I restored a(4)-a(6), see note above. - N. J. A. Sloane, Jan 31 2017

A114533 Permanent of the n X n matrix with numbers prime(1),prime(2),...,prime(n^2) in order across rows.

Original entry on oeis.org

1, 2, 29, 3746, 1919534, 2514903732, 6571874957648, 30662862975835376, 228731722381012564816, 2641049525155781555257440, 43818773386947889568479502592, 1014966115357067575070490776083200, 31412851866841234377483875199638978304
Offset: 0

Author

Simone Severini, Feb 15 2006

Keywords

Comments

Previous name was : "a(n) = permanent of the n X n matrix M defined as follows: if we concatenate the rows of M to form a vector v of length n^2, v_i is the i-th prime number".

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n->`if`(n=0, 1, Permanent(Matrix(n, (i, j)->ithprime((i-1)*n+j)))):
    seq(a(n), n=0..12);  # Alois P. Heinz, Dec 23 2013
  • Mathematica
    a[n_] := Permanent[Table[Prime[(i-1)*n+j], {i, 1, n}, {j, 1, n}]]; a[0]=1; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 12}] (* Jean-François Alcover, Jan 07 2016, adapted from Maple *)
    Join[{1},Table[Permanent[Partition[Prime[Range[n^2]],n]],{n,15}]] (* Harvey P. Dale, Aug 03 2019 *)
  • PARI
    permRWN(a)=n=matsize(a)[1]; if(n==1,return(a[1,1])); n1=n-1; sg=1; m=1; nc=0; in=vector(n); x=in; for(i=1,n,x[i]=a[i,n]-sum(j=1,n,a[i,j])/2); p=prod(i=1,n,x[i]); while(m,sg=-sg; j=1; if((nc%2)!=0,j++; while(in[j-1]==0,j++)); in[j]=1-in[j]; z=2*in[j]-1; nc+=z; m=nc!=in[n1]; for(i=1,n,x[i]+=z*a[i,j]); p+=sg*prod(i=1,n,x[i])); return(2*(2*(n%2)-1)*p)
    for(n=1,19,a=matrix(n,n,i,j,prime((i-1)*n+j)); print1(permRWN(a)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 11 2007
    
  • PARI
    permRWNb(a)=n=matsize(a)[1];if(n==1,return(a[1,1]));sg=1;in=vectorv(n);x=in;x=a[,n]-sum(j=1,n,a[,j])/2;p=prod(i=1,n,x[i]);for(k=1,2^(n-1)-1,sg=-sg;j=valuation(k,2)+1;z=1-2*in[j];in[j]+=z;x+=z*a[,j];p+=prod(i=1,n,x[i],sg));return(2*(2*(n%2)-1)*p)
    for(n=1,23,a=matrix(n,n,i,j,prime((i-1)*n+j));print1(permRWNb(a)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 15 2007
    
  • PARI
    {a(n) = matpermanent(matrix(n, n, i, j, prime((i-1)*n+j)))}
    for(n=0, 25, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 13 2021

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 11 2007
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 15 2007
New name from Michel Marcus, Nov 30 2013
a(0) inserted and a(12) by Alois P. Heinz, Dec 23 2013

A114534 The n-th entry of the sequence is the value of the permanent of an n X n matrix M defined as follows: if we concatenate the rows of M to form a vector v of length n^2, v_i is the i-th Fibonacci number.

Original entry on oeis.org

1, 132, 1460808, 6357011889600, 44491520971919463292800, 2082476039060691409777705387034081280, 2712373659248840873249840585282508476815021942277876736, 410721884168854528740774423430429149549703377187068577398353854503625738636800
Offset: 2

Author

Simone Severini, Feb 15 2006

Keywords

Comments

Conjecture: The rank of the matrix M is 2 for every n.

Examples

			For n=2, M=[0,1;1,2];
For n=3, M=[0,1,1;2,3,5;8,13,21].
		

Programs

  • PARI
    permRWNb(a)=n=matsize(a)[1];if(n==1,return(a[1,1]));sg=1;in=vectorv(n);x=in;x=a[,n]-sum(j=1,n,a[,j])/2;p=prod(i=1,n,x[i]);for(k=1,2^(n-1)-1,sg=-sg;j=valuation(k,2)+1;z=1-2*in[j];in[j]+=z;x+=z*a[,j];p+=prod(i=1,n,x[i],sg));return(2*(2*(n%2)-1)*p)
    a(n) = permRWNb(matrix(n,n,i,j,fibonacci((i-1)*n+j-1))); \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 15 2007
    
  • PARI
    a(n) = matpermanent(matrix(n,n,i,j,fibonacci((i-1)*n+j-1))); \\ Michel Marcus, Apr 08 2025

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 15 2007

A114530 a(n) = permanent of a bordered n X n (1,-1)-matrix with the following property: the elements on the border are 1; if we concatenate the rows of the matrix to form a vector v of length n^2, v_i = -1 if i is not a prime. The border of a matrix consists of the first and the last row and the first and the last column.

Original entry on oeis.org

6, 0, 8, 144, -80, -384, -2816, -15360, -125184, 5322240, -22966272, 36771840, -887224320, 1488936960, -217760382976, -1484266291200, -45948014198784, 65021593190400, -3267216288645120, -856122753024000, -3180322010587725824
Offset: 3

Author

Simone Severini, Feb 15 2006

Keywords

Programs

  • PARI
    permRWNb(a)=n=matsize(a)[1];if(n==1,return(a[1,1]));sg=1;in=vectorv(n);x=in;x=a[,n]-sum(j=1,n,a[,j])/2;p=prod(i=1,n,x[i]);for(k=1,2^(n-1)-1,sg=-sg;j=valuation(k,2)+1;z=1-2*in[j];in[j]+=z;x+=z*a[,j];p+=prod(i=1,n,x[i],sg));return(2*(2*(n%2)-1)*p)
    for(n=3,23,a=matrix(n,n,i,j,if(i==1||j==1||i==n||j==n,1,-1+2*isprime((i-1)*n+j)));print1(permRWNb(a)","))
    \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 15 2007

Extensions

More terms (and corrected definition) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 15 2007

A110956 a(n) = permanent of the n X n matrix M of zeros and ones defined as follows: if we concatenate the rows of M to form a vector v of length n^2, v_i = 0 if i is an entry from the sequence A045506 (inscribe 2 spheres of curvature 2 inside sphere of curvature -1, continue to inscribe spheres where possible; the sequence gives list of curvatures).

Original entry on oeis.org

2, 6, 20, 0, 368, 2016
Offset: 3

Author

Simone Severini, Sep 26 2005

Keywords

Crossrefs

Cf. A045506.

A110947 a(n) = permanent of an n X n matrix M of zeros and ones defined as follows: if we concatenate the rows of M to form a vector v of length n^2, v_i = 1 only if i = 1 or a multiple of 2.

Original entry on oeis.org

1, 1, 1, 0, 4, 0, 36, 0, 576, 0, 14400, 0, 518400, 0, 25401600, 0, 1625702400, 0, 131681894400, 0, 13168189440000, 0, 1593350922240000, 0, 229442532802560000, 0, 38775788043632640000, 0, 7600054456551997440000, 0
Offset: 1

Author

Simone Severini, Sep 25 2005

Keywords

Crossrefs

Odd-indexed terms are the same as A001044.

Programs

  • PARI
    a(n)={my(A=matrix(n,n,i,j,1-((i-1)*n+j)%2)); A[1,1]=1; matpermanent(A)} \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 14 2007
    
  • PARI
    a(n)=if(n==2,1,if(n%2,((n-1)/2)!^2)) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 14 2007

Formula

a(1)=a(2)=1 and for n>2: a(n)=0 if n=2*k, a(n)=k!^2 if n=2*k+1. - Herman Jamke (hermanjamke(AT)fastmail.fm), May 14 2007

Extensions

Corrected and extended by Herman Jamke (hermanjamke(AT)fastmail.fm), May 14 2007