John McNamara has authored 3 sequences.
A066744
a(n) = either 4a(n-1)+1 or 4a(n-1)+3 depending on corresponding term of A005614, +3 for 0, +1 for 1.
Original entry on oeis.org
1, 7, 29, 117, 471, 1885, 7543, 30173, 120693, 482775, 1931101, 7724405, 30897623, 123590493, 494361975, 1977447901, 7909791605, 31639166423, 126556665693, 506226662775, 2024906651101, 8099626604405, 32398506417623
Offset: 1
A066489
Binary expansion of n followed by its reverse complement.
Original entry on oeis.org
10, 1010, 1100, 100110, 101010, 110100, 111000, 10001110, 10010110, 10101010, 10110010, 11001100, 11010100, 11101000, 11110000, 1000011110, 1000101110, 1001010110, 1001100110, 1010011010, 1010101010, 1011010010, 1011100010, 1100011100, 1100101100, 1101010100
Offset: 1
a(2) = 1010 because 2 in binary is 10, the complement of which is 01, the reverse of which is 10, hence (10)(10). - _Sean A. Irvine_, Oct 22 2023
Binary expansion of numbers in
A035928.
-
a:= n-> (l-> parse(cat(seq(l[-i], i=1..nops(l)), 1-~l[])))(Bits[Split](n)):
seq(a(n), n=1..30); # Alois P. Heinz, Oct 22 2023
-
a(n)={my(v=binary(n)); fromdigits(concat(v,vector(#v,i,1-v[#v+1-i])))} \\ Andrew Howroyd, Oct 22 2023
A028894
a(n) = either 4a(n-1)+1 or 4a(n-1)+3 depending on corresponding term of A005614, +1 for 0, +3 for 1.
Original entry on oeis.org
1, 5, 23, 95, 381, 1527, 6109, 24439, 97759, 391037, 1564151, 6256607, 25026429, 100105719, 400422877, 1601691511, 6406766047, 25627064189, 102508256759, 410033027037, 1640132108151, 6560528432607, 26242113730429
Offset: 1
Comments