cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Roman Witula

Roman Witula's wiki page.

Roman Witula has authored 90 sequences. Here are the ten most recent ones:

A254666 Decimal expansion of the right Alzer's constant.

Original entry on oeis.org

9, 3, 0, 1, 0, 4, 3, 1, 6, 3, 0, 3, 6, 1, 6, 6, 8, 2, 2, 9, 9, 4, 5, 3, 0, 6, 2, 4, 0, 7, 2, 6, 1, 6, 0, 0, 3, 3, 3, 5, 3, 3, 2, 0, 5, 8, 0, 7, 3, 4, 6, 3, 8, 5, 4, 8, 0, 8, 2, 8, 9, 4, 4, 1, 0, 5, 1, 3, 6, 4, 6, 5, 2, 2, 8, 6, 7, 5, 8, 3, 4, 8, 3, 8, 8, 3, 1, 7, 4, 4, 3, 8, 0, 7, 7, 3, 2, 4, 3, 6, 8, 9, 9, 9, 7, 8, 4
Offset: 0

Author

Roman Witula, Feb 04 2015

Keywords

Comments

The right Alzer's constant x is defined to be the best constant in the right Alzer's inequality: abs(cos a + sin a) <= x*abs(cos(cos a) + cos(sin a)), where a is any real number.

Examples

			0.9301043163036166822994530624072616003335332058073463854808289441...
		

Crossrefs

Cf. A254615.

Programs

  • Mathematica
    RealDigits[1/(Sqrt[2]*Cos[1/Sqrt[2]]), 10, 120][[1]] (* Amiram Eldar, Jun 12 2023 *)
  • PARI
    1/(sqrt(2)*cos(1/sqrt(2))) \\ Michel Marcus, Feb 05 2015

Formula

Equals (sqrt(2)*cos(1/sqrt(2)))^(-1).

Extensions

a(99) corrected by Georg Fischer, Aug 12 2021

A254615 Decimal expansion of the left Alzer's constant x.

Original entry on oeis.org

1, 0, 8, 8, 4, 6, 4, 5, 5, 4, 0, 4, 4, 3, 9, 7, 3, 9, 2, 0, 2, 6, 6, 0, 5, 3, 9, 9, 5, 4, 4, 9, 0, 1, 7, 7, 9, 4, 0, 7, 2, 2, 4, 0, 5, 8, 7, 6, 5, 9, 5, 8, 3, 1, 2, 4, 3, 9, 4, 3, 1, 7, 3, 5, 2, 1, 8, 8, 2, 6, 0, 5, 8, 4, 9, 2, 2, 2, 9, 4, 6, 9, 1, 3, 0, 4, 8, 4, 3, 8, 1, 8, 2, 7, 3, 2, 4, 0, 0, 1
Offset: 1

Author

Roman Witula, Feb 03 2015

Keywords

Comments

The left Alzer's constant x is defined to be the best constant in the left Alzer's inequality: x*abs(sin(cos a) + sin(sin a)) <= abs(cos a + sin a), where a is any real number.

Examples

			x = 1.088464554044397392026605399544901779407224058765958312439431735...
		

Programs

  • Mathematica
    RealDigits[(Sqrt[2] Sin[1/Sqrt[2]])^(-1), 10, 100][[1]] (* Bruno Berselli, Feb 03 2015 *)
  • PARI
    1/(sqrt(2)*sin(1/sqrt(2))) \\ Michel Marcus, Feb 03 2015

Formula

x = (sqrt(2)*sin(1/sqrt(2)))^(-1).
x = Sum_{k=-oo..oo} (-1)^k/(1 - 2*(Pi*k)^2). - Bruno Berselli, Feb 03 2015

A254604 Decimal expansion of the half of a single half-wave constant.

Original entry on oeis.org

3, 6, 8, 3, 0, 5, 3, 9, 0, 5, 9, 6, 6, 6, 1, 3, 9, 9, 9, 4, 6, 9, 9, 1, 6, 8, 9, 9, 3, 2, 3, 3, 6, 3, 3, 8, 0, 8, 0, 7, 6, 0, 1, 5, 8, 2, 0, 9, 7, 9, 2, 7, 2, 7, 2, 7, 6, 8, 9, 9, 4, 9, 6, 5, 5, 3, 4, 6, 4, 2, 3, 5, 5, 5, 5, 2, 8, 6, 9, 4, 5, 0, 1, 8, 1, 8, 2, 5, 4, 5, 7, 0, 4, 7, 9, 1, 1, 5, 8, 4, 3, 1, 8, 1, 2, 6, 7, 6, 7, 3, 9, 6, 5, 9, 1, 5, 0, 4, 9, 4, 7
Offset: 0

Author

Roman Witula, Feb 02 2015

Keywords

Comments

By the definition this constant takes the value 0 < x < Pi such that the horizontal line y = sin x divides the region bounded by the sine curve and the interval [0,Pi] on the x-axis into two shapes of equal area.

Examples

			x = 0.368305390596661399946991689932336338080760158209792727276899496553...
		

Programs

  • Mathematica
    FindRoot[2 Cos[x] - (Pi - 2 x) Sin[x] - 1 == 0, {x, 0, Pi}, WorkingPrecision -> 150] (* Bruno Berselli, Feb 03 2015 *)
  • PARI
    solve(x=0, Pi, 2*cos(x) - (Pi - 2*x)*sin(x) - 1) \\ Michel Marcus, Feb 03 2015

Formula

2*cos(x) - (Pi - 2*x)*sin(x) = 1, 0 < x < Pi.

A251926 The Faulhaber-Knuth a(0,n) sequence.

Original entry on oeis.org

2, 1, 1, 1, 1, 0, 0, 1, 37, -60, -5, 37, 174, -955, -10545, 38610, 176297, -322740, -205420, 4512655, 56820585, -104019264, -25907081, 94854194, 1141847218, -2090335775, -414239903275, 6066664425833, 85621405759989, -156743813184120, -4337631088920, 47644406040193, 1265208493396175131, -2316168508680582540, -192288633159406495
Offset: 4

Author

Roman Witula, Dec 11 2014

Keywords

Comments

a(n) is equal to the remainder when dividing the polynomial T_n(x) by x^2 + x - 1. T_n(x) (in Z[x]) is the positive integer multiplicity of the modified Faulhaber polynomial T*_n(x), coefficients of which have GCD equal to 1. We have T*_n(x) = S(n;x)/x^2(x+1)^2 if n is odd, and T*_n(x) = S(n;x)/x(x+1)(2x+1) if n is even, n >= 4, where S(n;x) denotes the n-th Faulhaber polynomial, i.e., S(n;x) = 1/(n+1) sum{taken over i=0,1,...,n} Bin(n+1,i)Bern(i)x^(n+1-i), and Bern(i) denotes the i-th Bernoulli number with Bern(1)=1/2.
We note that every T_n(x) is a polynomial in the variable (x^2 + x - 1), for example T_7(x) = 3(x^2 + x - 1)^2 + 2(x^2 + x - 1) + 1. Furthermore, every T_n(x) is a polynomial in (x^2 + x + a) for each complex a. But only for a = -1 is the element a(n) also equal to the remainder when dividing S(n;x) by x^2 + x + a if n is odd and S(n;x)/(2x+1) by x^2 + x + a if n is even.

Examples

			We have: T_4(x) = 3x^2 + 3x - 1, T_4(x) - T_5(x) = x^2 + x, T_6(x) - T_7(x) = x^2 + x - 1, T_9(x) = (x^2 + x - 1)(2x^4 + 4x^3 - x^2 - 3x + 3) and T_15(x) - T_12(x) is divisible by (x^2 + x - 1), which implies a(0)=2, a(1)=1, a(2)=a(3), a(5)=0 and a(8)=a(11).
		

Crossrefs

Programs

  • Mathematica
    coeffFaulh[n_] := Module[{t, tab = {}, s, p, x},
      If[n < 4, Return["Give n greater than 3."]];
      t = Table[1, {n + 2}];
      Do[t[[i + 1]] = BernoulliB[i], {i, 1, n + 1}];
      t[[2]] = 1/2;
      s[m_, x_] := (Sum[Binomial[m + 1, i]t[[ i + 1]] x^(m + 1 - i),{i,0,m}])/(m + 1);
      Do[If[Mod[i, 2] == 0,
        p = PolynomialRemainder[FactorList[Factor[s[i, x]] (i + 1)/(x (x + 1) (2 x + 1))][[2,1]], -1 + x + x^2, x],
        p = PolynomialRemainder[FactorList[Factor[s[i, x]] (i + 1)/(x^2 (x + 1)^2)][[2,1]], -1 + x + x^2, x]];
       tab = Append[tab, p], {i, 4, n}];
      tab]

A219246 Decimal expansion of the maximum M(5) of the ratio (Sum_{k=1..5} (x(1)*x(2)*...*x(k))^(1/k))/(x(1) + ... + x(5)) taken over x(1), ..., x(5) > 0.

Original entry on oeis.org

1, 4, 8, 6, 3, 5, 3, 2, 2, 8, 9, 6, 3, 0, 5, 0, 6, 4, 0, 5, 2, 0, 4, 8, 7, 1, 6, 4, 6, 1, 9, 8, 5, 1, 5, 6, 6, 4, 3, 5, 4, 6, 9, 5, 6, 4, 1, 0, 0, 9, 3, 7, 9, 4, 5, 3, 2, 5, 3, 3, 5, 5, 8, 8, 2, 3, 9, 8, 9, 3, 8, 1, 0, 1, 4, 8, 1, 5, 9, 8, 7, 5, 5, 6, 6, 2, 4, 1, 9, 0, 0, 7, 4, 6, 1, 1, 3, 2, 2, 4, 4, 7
Offset: 1

Author

Roman Witula, Nov 16 2012

Keywords

Comments

The maximum M(n) of the ratio (Sum_{k=1..n} (x(1)*x(2)*...*x(k))^(1/k))/(x(1) + ... + x(n)) taken over x(1), ..., x(n) > 0 is discussed in A219245 - see also the paper of Witula et al. for the proofs.
The decimal expansions of M(4) and M(6) are A219245 and A219336, respectively.

Examples

			1.486353228963....
		

References

  • R. Witula, D. Jama, D. Slota, E. Hetmaniok, Finite version of Carleman's and Knopp's inequalities, Zeszyty naukowe Politechniki Slaskiej (Gliwice, Poland) 92 (2010), 93-96.

Crossrefs

Programs

  • Mathematica
    RealDigits[c5/.FindRoot[{1+x2/2+x3/3+x4/4+x5/5==c5, x2/2+x3/3+x4/4+x5/5==c5*x2^2, x3/3+x4/4+x5/5==c5*x3^3/x2^2, x4/4+x5/5==c5*x4^4/x3^3, x5/5==c5*x5^5/x4^4},{{c5,3/2},{x2,1/2},{x3,1/2},{x4,1/2},{x5,1/2}},WorkingPrecision->120],10,105][[1]] (* Vaclav Kotesovec, Oct 27 2014 *)

A219245 Decimal expansion of the maximum M(4) of the ratio (Sum_{k=1..4} (x(1)*x(2)*...*x(k))^(1/k))/(x(1) + ... + x(4)) taken over x(1), ..., x(4) > 0.

Original entry on oeis.org

1, 4, 2, 0, 8, 4, 4, 3, 8, 5, 4, 0, 9, 6, 1, 3, 8, 1, 2, 6, 8, 5, 2, 9, 7, 1, 5, 2, 8, 0, 3, 8, 7, 6, 1, 1, 1, 8, 8, 7, 3, 7, 5, 4, 4, 7, 0, 3, 2, 3, 3, 1, 1, 8, 2, 3, 8, 1, 9, 1, 9, 1, 9, 7, 7, 7, 8, 6, 4, 6, 6, 9, 2, 2, 6, 9, 7, 8, 2, 6, 8, 9, 6, 0, 3, 2, 9, 4, 8, 0, 5, 6, 1, 5, 8, 3, 4, 7, 7, 5, 1, 4, 2, 9, 7
Offset: 1

Author

Roman Witula, Nov 16 2012

Keywords

Comments

We note that the maximum M(n) of the ratio (Sum_{k=1..n} (x(1)*x(2)*...*x(k))^(1/k))/(x(1) + ... + x(n)) taken over x(1), ..., x(n) > 0 is equal to (1+sqrt(2))/2 for n=2 and 4/3 for n=3. Moreover it can be proved that M(n) < (1 + 1/n)^(n-1) - it is a finite version of Carleman's inequality (see the paper of Witula et al. for the proof). The sequence M(n), n=2,3,..., is increasing.
The decimal expansions of M(5) and M(6) are A219246 and A219336, respectively.

Examples

			M(4) = 1.42084438540961...
		

References

  • R. Witula, D. Jama, D. Slota, E. Hetmaniok, Finite version of Carleman's and Knopp's inequalities, Zeszyty naukowe Politechniki Slaskiej (Gliwice, Poland) 92 (2010), 93-96.

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Root[387420489 + 22039921152*#1 + 373658292864*#1^2 + 12841816536576*#1^3 + 274965186525696*#1^4 - 201976270848000*#1^5 + 42624005978423296*#1^6 + 342213608420278272*#1^7 + 660475521813381120*#1^8 - 2629784260986273792*#1^9 + 41447678188009291776*#1^10 + 427447433656163893248*#1^11 - 198705178996352483328*#1^12 - 2098418839125516877824*#1^13 + 16905530303693690241024*#1^14 + 14417509185682352898048*#1^15 - 20033038006659651207168*#1^16 - 149735761790067869220864*#1^17 + 18738444188050884919296*#1^18 + 361130725214496730644480*#1^19 + 220843507713085418766336*#1^20 - 1387347813563214701002752*#1^21 + 1472163837099830446915584*#1^22 - 654295038711035754184704*#1^23 + 109049173118505959030784*#1^24 & , 4], 105]][[1]] (* Vaclav Kotesovec, Oct 26 2014 *)

A219336 Decimal expansion of the maximum M(6) of the ratio (Sum_{k=1..6} (x(1)*x(2)*...*x(k))^(1/k))/(x(1) + ... + x(6)) taken over x(1), ..., x(6) > 0.

Original entry on oeis.org

1, 5, 3, 7, 9, 3, 7, 5, 5, 6, 5, 2, 0, 0, 3, 4, 9, 3, 1, 3, 6, 8, 1, 5, 8, 7, 1, 6, 0, 2, 6, 3, 2, 6, 8, 1, 5, 6, 0, 8, 6, 4, 5, 0, 8, 9, 8, 6, 3, 2, 1, 9, 6, 3, 3, 3, 2, 4, 6, 4, 3, 1, 1, 6, 3, 0, 0, 9, 2, 7, 6, 4, 1, 4, 2, 6, 1, 2, 9, 3, 4, 2, 5, 2, 3, 7, 7, 9, 3, 8, 0, 1, 3, 1, 4, 4, 2, 2, 9, 9, 5, 1, 9
Offset: 1

Author

Roman Witula, Nov 18 2012

Keywords

Comments

The maximum M(n) of the ratio (Sum_{k=1..n} (x(1)*x(2)*...*x(k))^(1/k))/(x(1) + ... + x(n)) taken over x(1), ..., x(n) > 0 is discussed in A219245 - see also the paper of Witula et al. for the proofs.
The decimal expansions of M(4) and M(5) are A219245 and A219246, respectively.

Examples

			1.537937556520034931368158716...
		

References

  • R. Witula, D. Jama, D. Slota, E. Hetmaniok, Finite version of Carleman's and Knopp's inequalities, Zeszyty naukowe Politechniki Slaskiej (Gliwice, Poland) 92 (2010), 93-96.

Crossrefs

Programs

  • Mathematica
    RealDigits[c6/.FindRoot[{1 + x2/2 + x3/3 + x4/4 + x5/5 + x6/6 == c6, x2/2 + x3/3 + x4/4 + x5/5 + x6/6 == c6*x2^2, x3/3 + x4/4 + x5/5 + x6/6 == c6*x3^3/x2^2, x4/4 + x5/5 + x6/6 == c6*x4^4/x3^3, x5/5 + x6/6 == c6*x5^5/x4^4, x6/6 == c6*x6^6/x5^5},{{c6,3/2},{x2,1/2},{x3,1/2},{x4,1/2},{x5,1/2},{x6,1/2}},WorkingPrecision->120],10,105][[1]] (* Vaclav Kotesovec, Oct 27 2014 *)

A218664 Coefficients of cubic polynomials p(x+n), where p(x) = x^3 + x^2 - 2*x - 1.

Original entry on oeis.org

1, 1, -2, -1, 1, 4, 3, -1, 1, 7, 14, 7, 1, 10, 31, 29, 1, 13, 54, 71, 1, 16, 83, 139, 1, 19, 118, 239, 1, 22, 159, 377, 1, 25, 206, 559, 1, 28, 259, 791, 1, 31, 318, 1079, 1, 34, 383, 1429, 1, 37, 454, 1847, 1, 40, 531, 2339, 1, 43, 614, 2911, 1, 46, 703, 3569, 1, 49, 798, 4319
Offset: 0

Author

Roman Witula, Nov 04 2012

Keywords

Comments

We have p(x) = (x - c(1))*(x - c(2))*(x - c(4)), where c(j) := 2*cos(2*Pi*j/7). We note that c(4) = c(3) = -c(1/2), c(1) = s(3) and c(2) = -s(1), where s(j) := 2*sin(Pi*j/14). Moreover we obtain -p(-x) = x^3 - x^2 - 2*x + 1 = (x + c(1))*(x + c(2))*(x + c(4)), q(x) := -x^3*p(1/x) = x^3 + 2*x^2 + x - 1 = (x - c(1)^(-1))*(x - c(2)^(-1))*(x - c(4)^(-1)), and -q(-x) = x^3 - 2*x^2 + x + 1 = (x + c(1)^(-1))*(x + c(2)^(-1))*(x + c(4)^(-1)).
We also have p(x+2) = x^3 + 7*x^2 + 14*x + 7 = (x + s(2)^2)*(x + s(4)^2)*(x + s(6)^2). The polynomial -p(-x-2) = x^3 - 7*x^2 + 14*x - 7 = (x - s(2)^2)*(x - s(4)^2)*(x - s(6)^2) is known as Johannes Kepler's cubic polynomial (see Witula's book).
Let us set r(x) := p(x+1). It can be verified that -x^3*r(1/x) = x^3 - 3*x^2 - 4*x - 1 = (x - c(1)/c(4))*(x - c(4)/c(2))*(x - c(2)/c(1)); for example, we have c(1)^3 + c(1)^2 - 2*c(1) - 1 = 0 which implies that c(1)^2 + 2*c(1) = 1/(c(1) - 1), and then c(1)^2 + 2*c(1) = c(4)/c(2) since c(4)/c(2) = (c(1)^4 - 4*c(1)^2 + 2)/(c(1)^2 - 2).
The polynomials p(x+n) and the ones obtained as above (i.e., after simple algebraic transformations) are the characteristic polynomials of many sequences in the OEIS; see crossrefs.

References

  • R. Witula, Complex Numbers, Polynomials and Partial Fraction Decomposition, Part 3, Wydawnictwo Politechniki Slaskiej, Gliwice 2010 (Silesian Technical University publishers).

Formula

We have a(4*k) = 1, a(4*k + 1) = 3*k + 1, a(4*k + 2) = 3*k^2 + 2*k - 2, a(4*k + 3) = k^3 + k^2 - 2*k - 1. Further, the following relations hold true: b(k+1) = b(k) + 3, c(k+1) = 2*b(k) -2*c(k) + 3, d(k+1) = b(k) - 2*c(k) - d(k) + 1, where p(x + k) = x^3 + b(k)*x^2 + c(k)*x + d(k).
Empirical g.f.: -(x^15 - x^14 - 2*x^13 + x^12 - 5*x^11 + 10*x^10 + 3*x^9 - 3*x^8 - 3*x^7 - 11*x^6 + 3*x^4 + x^3 + 2*x^2 - x - 1) / ((x-1)^4*(x+1)^4*(x^2+1)^4). - Colin Barker, May 17 2013

A211988 The Berndt-type sequence number 9 for the argument 2*Pi/13.

Original entry on oeis.org

0, -6, -37, 676, 2882, 12502, -196209, -856850, -3740697, 58876883, 257003504, 1121852777, -17656510365, -77073076671, -336434457597, 5295048110651, 23113603862267, 100894018986142, -1587942800101489, -6931585922526870, -30257313674299627, 476211413709501353
Offset: 0

Author

Roman Witula, Oct 25 2012

Keywords

Comments

a(n) + A218655(n)*sqrt(13) = A(2*n+1)*13^((1+floor(n/3))/2)*sqrt(2*(13 + 3*sqrt(13))/13), where A(n) is defined below.
The sequence A(n) from the name of a(n) is defined by the relation A(n) = s(1)^(-n) + s(3)^(-n) + s(9)^(-n), where s(j) := 2*sin(2*Pi*j/13). The sequence with respective positive powers is discussed in A216508 (see sequence Y(n) in Comments to A216508).
It follows that A(n) = sqrt((13-3*sqrt(13))/2)*A(n-1) + (sqrt(13)-3)*A(n-2)/2 - sqrt((13-3*sqrt(13))/26)*A(n-3), with A(-1) = sqrt((13-3*sqrt(13))/2), A(0)=3, and A(1) = sqrt((13-3*sqrt(13))/2).
We note that s(1) + s(3) + s(9) = s(1)^(-1) + s(3)^(-1) + s(9)^(-1) = sqrt((13-3*sqrt(13))/2), sqrt(2*sqrt(13))*(s(1)^(-3) + s(3)^(-3) + s(9)^(-3)) = sqrt(97*sqrt(13)-339), and s(1)^(-9) + s(3)^(-9) + s(9)^(-9) = (131/13)*sqrt(2834 - 786*sqrt(13)).
The numbers of other Berndt-type sequences for the argument 2*Pi/13 in crossrefs are given.

References

  • R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
  • R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

A218655 The Berndt-type sequence number 10 for the argument 2*Pi/13.

Original entry on oeis.org

2, 4, 13, -176, -786, -3452, 54483, 237722, 1037569, -16329149, -71279530, -311145495, 4897036897, 21376227709, 93310132523, -1468582101731, -6410560285891, -27982966049682, 440416091468393, 1922476035761802, 8391868916275609
Offset: 0

Author

Roman Witula, Nov 04 2012

Keywords

Comments

A211988(n) + a(n)*sqrt(13) = A(2*n+1)*13^((1 + floor(n/3))/2)*sqrt(2*(13 + 3*sqrt(13))/13), where A(n) is defined below.
The sequence A(n) from the name of a(n) is defined by the relation A(n) = s(1)^(-n) + s(3)^(-n) + s(9)^(-n), where s(j) := 2*sin(2*Pi*j/13). The sequence with respective positive powers is discussed in A216508 (see sequence Y(n) in comments to A216508).
It could be deduced that A(n) = sqrt((13-3*sqrt(13))/2)*A(n-1) + (sqrt(13)-3)*A(n-2)/2 - sqrt((13-3*sqrt(13))/26)*A(n-3), with A(-1) = sqrt((13-3*sqrt(13))/2), A(0)=3, and A(1) = sqrt((13-3*sqrt(13))/2).
The numbers of other Berndt-type sequences for the argument 2*Pi/13 in crossrefs are given.

Examples

			Let us put b(n) = A211988(n) + a(n)*sqrt(13). Then we get b(0) = 2*sqrt(13), b(1) = -6 + 4*sqrt(13), b(2) = -37 + 13*sqrt(13), b(3) = 676 - 176*sqrt(13), b(4) = 2882 - 786*sqrt(13), b(5) = 12502 - 3452*sqrt(13).
		

References

  • R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
  • R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).