cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A219245 Decimal expansion of the maximum M(4) of the ratio (Sum_{k=1..4} (x(1)*x(2)*...*x(k))^(1/k))/(x(1) + ... + x(4)) taken over x(1), ..., x(4) > 0.

Original entry on oeis.org

1, 4, 2, 0, 8, 4, 4, 3, 8, 5, 4, 0, 9, 6, 1, 3, 8, 1, 2, 6, 8, 5, 2, 9, 7, 1, 5, 2, 8, 0, 3, 8, 7, 6, 1, 1, 1, 8, 8, 7, 3, 7, 5, 4, 4, 7, 0, 3, 2, 3, 3, 1, 1, 8, 2, 3, 8, 1, 9, 1, 9, 1, 9, 7, 7, 7, 8, 6, 4, 6, 6, 9, 2, 2, 6, 9, 7, 8, 2, 6, 8, 9, 6, 0, 3, 2, 9, 4, 8, 0, 5, 6, 1, 5, 8, 3, 4, 7, 7, 5, 1, 4, 2, 9, 7
Offset: 1

Views

Author

Roman Witula, Nov 16 2012

Keywords

Comments

We note that the maximum M(n) of the ratio (Sum_{k=1..n} (x(1)*x(2)*...*x(k))^(1/k))/(x(1) + ... + x(n)) taken over x(1), ..., x(n) > 0 is equal to (1+sqrt(2))/2 for n=2 and 4/3 for n=3. Moreover it can be proved that M(n) < (1 + 1/n)^(n-1) - it is a finite version of Carleman's inequality (see the paper of Witula et al. for the proof). The sequence M(n), n=2,3,..., is increasing.
The decimal expansions of M(5) and M(6) are A219246 and A219336, respectively.

Examples

			M(4) = 1.42084438540961...
		

References

  • R. Witula, D. Jama, D. Slota, E. Hetmaniok, Finite version of Carleman's and Knopp's inequalities, Zeszyty naukowe Politechniki Slaskiej (Gliwice, Poland) 92 (2010), 93-96.

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Root[387420489 + 22039921152*#1 + 373658292864*#1^2 + 12841816536576*#1^3 + 274965186525696*#1^4 - 201976270848000*#1^5 + 42624005978423296*#1^6 + 342213608420278272*#1^7 + 660475521813381120*#1^8 - 2629784260986273792*#1^9 + 41447678188009291776*#1^10 + 427447433656163893248*#1^11 - 198705178996352483328*#1^12 - 2098418839125516877824*#1^13 + 16905530303693690241024*#1^14 + 14417509185682352898048*#1^15 - 20033038006659651207168*#1^16 - 149735761790067869220864*#1^17 + 18738444188050884919296*#1^18 + 361130725214496730644480*#1^19 + 220843507713085418766336*#1^20 - 1387347813563214701002752*#1^21 + 1472163837099830446915584*#1^22 - 654295038711035754184704*#1^23 + 109049173118505959030784*#1^24 & , 4], 105]][[1]] (* Vaclav Kotesovec, Oct 26 2014 *)

A219246 Decimal expansion of the maximum M(5) of the ratio (Sum_{k=1..5} (x(1)*x(2)*...*x(k))^(1/k))/(x(1) + ... + x(5)) taken over x(1), ..., x(5) > 0.

Original entry on oeis.org

1, 4, 8, 6, 3, 5, 3, 2, 2, 8, 9, 6, 3, 0, 5, 0, 6, 4, 0, 5, 2, 0, 4, 8, 7, 1, 6, 4, 6, 1, 9, 8, 5, 1, 5, 6, 6, 4, 3, 5, 4, 6, 9, 5, 6, 4, 1, 0, 0, 9, 3, 7, 9, 4, 5, 3, 2, 5, 3, 3, 5, 5, 8, 8, 2, 3, 9, 8, 9, 3, 8, 1, 0, 1, 4, 8, 1, 5, 9, 8, 7, 5, 5, 6, 6, 2, 4, 1, 9, 0, 0, 7, 4, 6, 1, 1, 3, 2, 2, 4, 4, 7
Offset: 1

Views

Author

Roman Witula, Nov 16 2012

Keywords

Comments

The maximum M(n) of the ratio (Sum_{k=1..n} (x(1)*x(2)*...*x(k))^(1/k))/(x(1) + ... + x(n)) taken over x(1), ..., x(n) > 0 is discussed in A219245 - see also the paper of Witula et al. for the proofs.
The decimal expansions of M(4) and M(6) are A219245 and A219336, respectively.

Examples

			1.486353228963....
		

References

  • R. Witula, D. Jama, D. Slota, E. Hetmaniok, Finite version of Carleman's and Knopp's inequalities, Zeszyty naukowe Politechniki Slaskiej (Gliwice, Poland) 92 (2010), 93-96.

Crossrefs

Programs

  • Mathematica
    RealDigits[c5/.FindRoot[{1+x2/2+x3/3+x4/4+x5/5==c5, x2/2+x3/3+x4/4+x5/5==c5*x2^2, x3/3+x4/4+x5/5==c5*x3^3/x2^2, x4/4+x5/5==c5*x4^4/x3^3, x5/5==c5*x5^5/x4^4},{{c5,3/2},{x2,1/2},{x3,1/2},{x4,1/2},{x5,1/2}},WorkingPrecision->120],10,105][[1]] (* Vaclav Kotesovec, Oct 27 2014 *)

A249403 Decimal expansion of the maximum M(7) of the ratio (Sum_{k=1..7} (x(1)*x(2)*...*x(k))^(1/k))/(x(1) + ... + x(7)) taken over x(1), ..., x(7) > 0.

Original entry on oeis.org

1, 5, 8, 0, 0, 3, 7, 2, 1, 0, 6, 3, 2, 0, 5, 2, 3, 5, 2, 0, 8, 4, 0, 6, 3, 4, 9, 8, 1, 8, 3, 2, 6, 4, 4, 9, 2, 1, 1, 2, 8, 1, 5, 8, 0, 5, 9, 1, 6, 5, 9, 6, 1, 9, 7, 0, 1, 7, 4, 2, 3, 6, 9, 2, 0, 6, 0, 1, 5, 3, 7, 3, 7, 1, 0, 5, 3, 7, 7, 1, 1, 3, 5, 9, 2, 3, 5, 6, 4, 8, 0, 9, 0, 2, 1, 7, 0, 1, 4, 4, 8, 7, 0, 9, 0
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 27 2014

Keywords

Comments

M(2) = (1+sqrt(2))/2, M(3) = 4/3.
M(n) = exp(1) - 2*Pi^2*exp(1)/(log(n))^2 + O(1/(log(n))^3), [de Bruijn, 1963].

Examples

			1.5800372106320523520840634981832644921128158059165961970174236920601537371...
		

References

  • N. G. de Bruijn, Carleman's inequality for finite series, Nederl. Akad. Wetensch. Proc. Ser. A 66 = Indag, Math., 25:505-514, 1963.
  • R. Witula, D. Jama, D. Slota, E. Hetmaniok, Finite version of Carleman's and Knopp's inequalities, Zeszyty naukowe Politechniki Slaskiej (Gliwice, Poland) 92 (2010), 93-96.

Crossrefs

Cf. A174968 = M(2), A219245 = M(4), A219246 = M(5), A219336 = M(6).

Programs

  • Mathematica
    RealDigits[c7/.FindRoot[{1 + x2/2 + x3/3 + x4/4 + x5/5 + x6/6 + x7/7 == c7, x2/2 + x3/3 + x4/4 + x5/5 + x6/6 + x7/7 == c7*x2^2, x3/3 + x4/4 + x5/5 + x6/6 + x7/7 == c7*x3^3/x2^2, x4/4 + x5/5 + x6/6 + x7/7 == c7*x4^4/x3^3, x5/5 + x6/6 + x7/7 == c7*x5^5/x4^4, x6/6 + x7/7 == c7*x6^6/x5^5, x7/7 == c7*x7^7/x6^6}, {{c7, 3/2}, {x2, 1/2}, {x3, 1/2}, {x4, 1/2}, {x5, 1/2}, {x6, 1/2}, {x7, 1/2}}, WorkingPrecision->120], 10, 105][[1]]

A249276 Numerators of fractions appearing in a generalization of Carleman's inequality.

Original entry on oeis.org

-1, 1, 1, 1, 73, 11, 3625, 5525, 5233001, 1212281, 927777937, 772193, 43791735453787, 6889178449747, 158996102434867, 107876982981287, 782501215247703271, 6225541612992329, 235541803917995571502409
Offset: 0

Views

Author

Jean-François Alcover, Oct 24 2014

Keywords

Examples

			Fractions begin -1, 1/2, 1/24, 1/48, 73/5760, 11/1280, 3625/580608, ...
		

Crossrefs

Cf. A249277 (denominators), A219245, A219246, A219336.

Programs

  • Mathematica
    b[0] = -1; b[n_] := b[n] = (-1/n)*Sum[b[n - k]/(k + 1), {k, 1, n}]; Table[b[n] // Numerator, {n, 0, 20}]
    CoefficientList[Series[-(1 - x)^(-(1 - x)/x)/E, {x, 0, 20}], x] // Numerator (* Eric W. Weisstein, Apr 13 2018 *)

Formula

sum_{k >= 1} (a_1 a_2 ... a_k)^(1/k) < e*sum_{k >= 1} (1-sum_{j=1..m} b_j/(k+1)^j)*a_k, where a_k >= 0 for all k and a_l > 0 for at least one l, m being any positive integer.
b(0) = -1, b(n) = (-1/n)*sum_{k=1..n} b(n-k)/(k+1).

A249277 Denominators of fractions appearing in a generalization of Carleman's inequality.

Original entry on oeis.org

1, 2, 24, 48, 5760, 1280, 580608, 1161216, 1393459200, 398131200, 367873228800, 363331584, 24103053950976000, 4382373445632000, 115694658964684800, 88995891511296000, 726206474732175360000, 6455168664286003200
Offset: 0

Views

Author

Jean-François Alcover, Oct 24 2014

Keywords

Examples

			Fractions begin -1, 1/2, 1/24, 1/48, 73/5760, 11/1280, 3625/580608, ...
		

Crossrefs

Cf. A249276 (numerators), A219245, A219246, A219336.

Programs

  • Mathematica
    b[0] = -1; b[n_] := b[n] = (-1/n)*Sum[b[n - k]/(k + 1), {k, 1, n}]; Table[b[n] // Denominator, {n, 0, 20}]
    CoefficientList[Series[-(1 - x)^((x - 1)/x)/E, {x, 0, 20}], x] // Denominator (* communicated by Eric W. Weisstein, Apr 13 2018, based on result by Michael Trott *)

Formula

b(0) = -1, b(n) = (-1/n)*sum_{k=1..n} b(n-k)/(k+1).
Showing 1-5 of 5 results.