cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A268886 T(n,k)=Number of nXk binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 1, 0, 2, 5, 0, 5, 14, 20, 0, 10, 54, 84, 71, 0, 20, 158, 501, 462, 235, 0, 38, 475, 2190, 4133, 2418, 744, 0, 71, 1340, 9996, 27130, 31956, 12252, 2285, 0, 130, 3740, 42362, 186732, 317966, 236960, 60666, 6865, 0, 235, 10204, 178400, 1187838, 3283890
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2016

Keywords

Comments

Table starts
.0.....1.......2.........5..........10............20..............38
.0.....5......14........54.........158...........475............1340
.0....20......84.......501........2190..........9996...........42362
.0....71.....462......4133.......27130........186732.........1187838
.0...235....2418.....31956......317966.......3283890........31427480
.0...744...12252....236960.....3596174......55491832.......800733668
.0..2285...60666...1706732....39670270.....911930096.....19876401224
.0..6865..295230..12034000...429588382...14681855846....483987898760
.0.20284.1417452..83485488..4585939726..232688402028..11611969197776
.0.59155.6732102.571836176.48401059362.3642322709900.275345016177616

Examples

			Some solutions for n=4 k=4
..0..1..0..0. .0..0..0..0. .0..0..1..0. .0..0..0..0. .0..1..0..0
..0..0..0..1. .0..1..0..1. .1..0..0..1. .0..0..1..1. .0..1..0..0
..0..0..1..0. .1..0..0..0. .1..0..0..0. .0..0..0..0. .0..1..0..0
..1..0..1..0. .1..0..0..1. .1..1..0..1. .0..1..0..0. .1..0..0..0
		

Crossrefs

Column 2 is A054444(n-1).
Row 1 is A001629.

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) -a(n-4)
k=3: a(n) = 10*a(n-1) -31*a(n-2) +30*a(n-3) -9*a(n-4)
k=4: a(n) = 16*a(n-1) -88*a(n-2) +200*a(n-3) -208*a(n-4) +96*a(n-5) -16*a(n-6) for n>7
k=5: [order 8] for n>9
k=6: [order 10] for n>12
k=7: [order 14] for n>16
Empirical for row n:
n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
n=2: a(n) = 2*a(n-1) +5*a(n-2) -4*a(n-3) -11*a(n-4) -6*a(n-5) -a(n-6)
n=3: [order 9]
n=4: [order 16]
n=5: [order 26]
n=6: [order 42]
n=7: [order 68]

A060920 Bisection of Fibonacci triangle A037027: even-indexed members of column sequences of A037027 (not counting leading zeros).

Original entry on oeis.org

1, 2, 1, 5, 5, 1, 13, 20, 9, 1, 34, 71, 51, 14, 1, 89, 235, 233, 105, 20, 1, 233, 744, 942, 594, 190, 27, 1, 610, 2285, 3522, 2860, 1295, 315, 35, 1, 1597, 6865, 12473, 12402, 7285, 2534, 490, 44, 1, 4181, 20284, 42447, 49963, 36122, 16407, 4578, 726, 54, 1
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Companion triangle (odd-indexed members) A060921.

Examples

			Triangle begins as:
      1;
      2,     1;
      5,     5,      1;
     13,    20,      9,      1;
     34,    71,     51,     14,      1;
     89,   235,    233,    105,     20,     1;
    233,   744,    942,    594,    190,    27,     1;
    610,  2285,   3522,   2860,   1295,   315,    35,    1;
   1597,  6865,  12473,  12402,   7285,  2534,   490,   44,    1;
   4181, 20284,  42447,  49963,  36122, 16407,  4578,  726,   54,  1;
  10946, 59155, 140109, 190570, 163730, 91959, 33705, 7776, 1035, 65, 1;
		

Crossrefs

Column sequences: A001519 (k=0), A054444 (k=1), A061178 (k=2), A061179 (k=3), A061180 (k=4), A061181 (k=5).

Programs

  • Magma
    A060920:= func< n,k | (&+[Binomial(2*n-k-j, j)*Binomial(2*n-k-2*j, k): j in [0..2*n-k]]) >;
    [A060920(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 06 2021
    
  • Mathematica
    A060920[n_, k_]:= Sum[Binomial[2*n-k-j, j]*Binomial[2*n-k-2*j, k], {j,0,2*n-k}];
    Table[A060920[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
  • Sage
    def A060920(n,k): return sum(binomial(2*n-k-j, j)*binomial(2*n-k-2*j, k) for j in (0..2*n-k))
    flatten([[A060920(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 06 2021

Formula

T(n, k) = A037027(2*n-k, k).
T(n, k) = ((2*(n-k) + 1)*A060921(n-1, k-1) + 4*n*T(n-1, k-1))/(5*k), n >= k >= 1.
T(n, 0) = F(n)^2 + F(n+1)^2 = A001519(n), with the Fibonacci numbers F(n) = A000045(n).
Sum_{k=0..n} T(n, k) = (2^(2*n + 1) + 1)/3 = A007583(n).
G.f. for column m >= 0: x^m*pFe(m+1, x)/(1-3*x+x^2)^(m+1), where pFe(n, x) := Sum_{m=0..n} A061176(n, m)*x^m (row polynomials of signed triangle A061176).
G.f.: (1-x*(1+y))/(1 - (3+2*y)*x + (1+y)^2*x^2). - Vladeta Jovovic, Oct 11 2003

A027991 a(n) = Sum{T(n,k)*T(n,2n-k)}, 0<=k<=n-1, T given by A027926.

Original entry on oeis.org

1, 3, 12, 40, 130, 404, 1227, 3653, 10720, 31090, 89316, 254568, 720757, 2029095, 5684340, 15855964, 44061862, 122032508, 336966015, 927953705, 2549229256, 6987648358, 19115124552, 52194037200, 142274514025, 387215773899
Offset: 1

Views

Author

Keywords

Comments

From Wolfdieter Lang, Jan 02 2012: (Start)
a(n) = A024458(2*n-1), n>=1 (bisection, odd arguments).
chate(n):=a(n+1), n>=0, is the even part of the bisection of the half-convolution of the sequence A000045(n+1), n>=0, with itself. See a comment on A201204 for the definition of half-convolution. There one finds also the rule for the o.g.f.s of the bisection. Here the o.g.f. of the sequence chate(n), n>=0, is Chate(x):= (Ce(x)+U2(x))/2 with Ce(x)=(1-x+x^2)/(1-3*x+x^2)^2, the o.g.f. of A054444(n), and
U2(x)=(1-x)/((1+x)*(1-3*x+x^2)), the o.g.f. of A007598(n+1), n>=0. This results (after multiplying with x) in the o.g.f. given below in the formula section. It is equivalent to the explicit formula given there, as can be seen after a partial fraction decomposition of the o.g.f.
(End)

Crossrefs

Formula

a(n) = (1/5)[n*F(2n+2) - n*F(2n-2) + F(2n-1) - (-1)^n], F(n)=A000045(n).
O.g.f.: x*(1-2*x+2*x^2)/((1-3*x+x^2)^2*(1+x)). See the comment above. - Wolfdieter Lang, Jan 02 2012

A061178 Third column (m=2) of triangle A060920 (bisection of Fibonacci triangle, even part).

Original entry on oeis.org

1, 9, 51, 233, 942, 3522, 12473, 42447, 140109, 451441, 1426380, 4434420, 13599505, 41225349, 123723351, 368080793, 1086665562, 3186317718, 9286256393, 26916587307, 77634928209, 222920650081
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Numerator polynomial of g.f. is sum(A061176(3,m)*x^m,m=0..3).

Crossrefs

Formula

a(n)= A060920(n+2, 2).
G.f.: (1-x^3)/(1-3*x+x^2)^3.

A121530 Number of double rises at an odd level in all nondecreasing Dyck paths of semilength n. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.

Original entry on oeis.org

0, 1, 4, 14, 47, 148, 454, 1359, 4004, 11644, 33521, 95696, 271300, 764605, 2143964, 5985186, 16643779, 46124692, 127433562, 351106955, 964976460, 2646158176, 7241414949, 19779499584, 53933402472, 146828245753, 399137621524
Offset: 1

Views

Author

Emeric Deutsch, Aug 05 2006

Keywords

Comments

a(n)=Sum(k*A121529(n,k), k>=0). a(n)+A121532(n)=A054444(n-2).

Examples

			a(3)=4 because we have UDUDUD, UDU/UDD, U/UDDUD, U/UDUDD and U/UUDDD, the double rises at an odd level being indicated by a / (U=(1,1), D=(1,-1)).
		

Crossrefs

Programs

  • Maple
    g:=z^2*(1-2*z-z^2+4*z^3-3*z^4)/(1+z)/(1-3*z+z^2)^2/(1-z-z^2): gser:=series(g,z=0,33): seq(coeff(gser,z,n),n=1..30);
  • Mathematica
    Rest[CoefficientList[Series[x^2*(1-2*x-x^2+4*x^3-3*x^4)/(1+x)/(1-3*x+x^2)^2 /(1-x-x^2), {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 20 2014 *)

Formula

G.f.=z^2*(1-2z-z^2+4z^3-3z^4)/[(1+z)(1-3z+z^2)^2*(1-z-z^2)].
a(n) ~ (3-sqrt(5)) * (3+sqrt(5))^n * n / (5 * 2^(n+1)). - Vaclav Kotesovec, Mar 20 2014
Equivalently, a(n) ~ phi^(2*n-2) * n / 5, where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 06 2021

A121532 Number of double rises at an even level in all nondecreasing Dyck paths of semilength n. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.

Original entry on oeis.org

0, 0, 1, 6, 24, 87, 290, 926, 2861, 8640, 25634, 75015, 217100, 622620, 1772097, 5011394, 14093980, 39448623, 109954398, 305344314, 845165725, 2332485420, 6420202246, 17629525871, 48304680504, 132092031672, 360557665825
Offset: 1

Views

Author

Emeric Deutsch, Aug 05 2006

Keywords

Examples

			a(3)=1 because we have UDUDUD, UDUUDD, UUDDUD, UUDUDD and UU/UDDD, the double rises at an odd level being indicated by a / (U=(1,1), D=(1,-1)).
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0,0] cat Coefficients(R!( x^3*(1-3*x^2+2*x^3-x^4)/((1+x)*(1-3*x+x^2)^2*(1-x-x^2)) )); // G. C. Greubel, May 24 2019
    
  • Maple
    g:=z^3*(1-3*z^2+2*z^3-z^4)/(1+z)/(1-3*z+z^2)^2/(1-z-z^2): gser:=series(g,z=0,35): seq(coeff(gser,z,n),n=1..32);
  • Mathematica
    Rest[CoefficientList[Series[x^3*(1-3*x^2+2*x^3-x^4)/(1+x)/(1-3*x+x^2)^2/(1-x-x^2), {x, 0, 30}], x]] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    my(x='x+O('x^30)); concat([0,0], Vec(x^3*(1-3*x^2+2*x^3-x^4)/((1+x)*(1-3*x+x^2)^2*(1-x-x^2)))) \\ G. C. Greubel, May 24 2019
    
  • Sage
    a=(x^3*(1-3*x^2+2*x^3-x^4)/((1+x)*(1-3*x+x^2)^2*(1-x-x^2)) ).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 24 2019

Formula

a(n) = Sum_{k>=0} k*A121531(n,k).
a(n) = A054444(n-2) - A121530(n).
G.f.: x^3*(1-3*x^2+2*x^3-x^4)/((1+x)*(1-3*x+x^2)^2*(1-x-x^2)). [Corrected by Georg Fischer, May 24 2019]
a(n) ~ (3-sqrt(5)) * (3+sqrt(5))^n * n / (5 * 2^(n+1)). - Vaclav Kotesovec, Mar 20 2014
Equivalently, a(n) ~ phi^(2*n-2) * n / 5, where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 06 2021
Showing 1-6 of 6 results.