A268886
T(n,k)=Number of nXk binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.
Original entry on oeis.org
0, 1, 0, 2, 5, 0, 5, 14, 20, 0, 10, 54, 84, 71, 0, 20, 158, 501, 462, 235, 0, 38, 475, 2190, 4133, 2418, 744, 0, 71, 1340, 9996, 27130, 31956, 12252, 2285, 0, 130, 3740, 42362, 186732, 317966, 236960, 60666, 6865, 0, 235, 10204, 178400, 1187838, 3283890
Offset: 1
Some solutions for n=4 k=4
..0..1..0..0. .0..0..0..0. .0..0..1..0. .0..0..0..0. .0..1..0..0
..0..0..0..1. .0..1..0..1. .1..0..0..1. .0..0..1..1. .0..1..0..0
..0..0..1..0. .1..0..0..0. .1..0..0..0. .0..0..0..0. .0..1..0..0
..1..0..1..0. .1..0..0..1. .1..1..0..1. .0..1..0..0. .1..0..0..0
A060920
Bisection of Fibonacci triangle A037027: even-indexed members of column sequences of A037027 (not counting leading zeros).
Original entry on oeis.org
1, 2, 1, 5, 5, 1, 13, 20, 9, 1, 34, 71, 51, 14, 1, 89, 235, 233, 105, 20, 1, 233, 744, 942, 594, 190, 27, 1, 610, 2285, 3522, 2860, 1295, 315, 35, 1, 1597, 6865, 12473, 12402, 7285, 2534, 490, 44, 1, 4181, 20284, 42447, 49963, 36122, 16407, 4578, 726, 54, 1
Offset: 0
Triangle begins as:
1;
2, 1;
5, 5, 1;
13, 20, 9, 1;
34, 71, 51, 14, 1;
89, 235, 233, 105, 20, 1;
233, 744, 942, 594, 190, 27, 1;
610, 2285, 3522, 2860, 1295, 315, 35, 1;
1597, 6865, 12473, 12402, 7285, 2534, 490, 44, 1;
4181, 20284, 42447, 49963, 36122, 16407, 4578, 726, 54, 1;
10946, 59155, 140109, 190570, 163730, 91959, 33705, 7776, 1035, 65, 1;
-
A060920:= func< n,k | (&+[Binomial(2*n-k-j, j)*Binomial(2*n-k-2*j, k): j in [0..2*n-k]]) >;
[A060920(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 06 2021
-
A060920[n_, k_]:= Sum[Binomial[2*n-k-j, j]*Binomial[2*n-k-2*j, k], {j,0,2*n-k}];
Table[A060920[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
-
def A060920(n,k): return sum(binomial(2*n-k-j, j)*binomial(2*n-k-2*j, k) for j in (0..2*n-k))
flatten([[A060920(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 06 2021
A027991
a(n) = Sum{T(n,k)*T(n,2n-k)}, 0<=k<=n-1, T given by A027926.
Original entry on oeis.org
1, 3, 12, 40, 130, 404, 1227, 3653, 10720, 31090, 89316, 254568, 720757, 2029095, 5684340, 15855964, 44061862, 122032508, 336966015, 927953705, 2549229256, 6987648358, 19115124552, 52194037200, 142274514025, 387215773899
Offset: 1
A061178
Third column (m=2) of triangle A060920 (bisection of Fibonacci triangle, even part).
Original entry on oeis.org
1, 9, 51, 233, 942, 3522, 12473, 42447, 140109, 451441, 1426380, 4434420, 13599505, 41225349, 123723351, 368080793, 1086665562, 3186317718, 9286256393, 26916587307, 77634928209, 222920650081
Offset: 0
A121530
Number of double rises at an odd level in all nondecreasing Dyck paths of semilength n. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.
Original entry on oeis.org
0, 1, 4, 14, 47, 148, 454, 1359, 4004, 11644, 33521, 95696, 271300, 764605, 2143964, 5985186, 16643779, 46124692, 127433562, 351106955, 964976460, 2646158176, 7241414949, 19779499584, 53933402472, 146828245753, 399137621524
Offset: 1
a(3)=4 because we have UDUDUD, UDU/UDD, U/UDDUD, U/UDUDD and U/UUDDD, the double rises at an odd level being indicated by a / (U=(1,1), D=(1,-1)).
- E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
- Index entries for linear recurrences with constant coefficients, signature (6,-9,-5,15,-1,-4,1)
-
g:=z^2*(1-2*z-z^2+4*z^3-3*z^4)/(1+z)/(1-3*z+z^2)^2/(1-z-z^2): gser:=series(g,z=0,33): seq(coeff(gser,z,n),n=1..30);
-
Rest[CoefficientList[Series[x^2*(1-2*x-x^2+4*x^3-3*x^4)/(1+x)/(1-3*x+x^2)^2 /(1-x-x^2), {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 20 2014 *)
A121532
Number of double rises at an even level in all nondecreasing Dyck paths of semilength n. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.
Original entry on oeis.org
0, 0, 1, 6, 24, 87, 290, 926, 2861, 8640, 25634, 75015, 217100, 622620, 1772097, 5011394, 14093980, 39448623, 109954398, 305344314, 845165725, 2332485420, 6420202246, 17629525871, 48304680504, 132092031672, 360557665825
Offset: 1
a(3)=1 because we have UDUDUD, UDUUDD, UUDDUD, UUDUDD and UU/UDDD, the double rises at an odd level being indicated by a / (U=(1,1), D=(1,-1)).
- E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
- Index entries for linear recurrences with constant coefficients, signature (6,-9,-5,15,-1,-4,1).
-
R:=PowerSeriesRing(Integers(), 30); [0,0] cat Coefficients(R!( x^3*(1-3*x^2+2*x^3-x^4)/((1+x)*(1-3*x+x^2)^2*(1-x-x^2)) )); // G. C. Greubel, May 24 2019
-
g:=z^3*(1-3*z^2+2*z^3-z^4)/(1+z)/(1-3*z+z^2)^2/(1-z-z^2): gser:=series(g,z=0,35): seq(coeff(gser,z,n),n=1..32);
-
Rest[CoefficientList[Series[x^3*(1-3*x^2+2*x^3-x^4)/(1+x)/(1-3*x+x^2)^2/(1-x-x^2), {x, 0, 30}], x]] (* Vaclav Kotesovec, Mar 20 2014 *)
-
my(x='x+O('x^30)); concat([0,0], Vec(x^3*(1-3*x^2+2*x^3-x^4)/((1+x)*(1-3*x+x^2)^2*(1-x-x^2)))) \\ G. C. Greubel, May 24 2019
-
a=(x^3*(1-3*x^2+2*x^3-x^4)/((1+x)*(1-3*x+x^2)^2*(1-x-x^2)) ).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 24 2019
Showing 1-6 of 6 results.
Comments