A001787
a(n) = n*2^(n-1).
Original entry on oeis.org
0, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120, 11264, 24576, 53248, 114688, 245760, 524288, 1114112, 2359296, 4980736, 10485760, 22020096, 46137344, 96468992, 201326592, 419430400, 872415232, 1811939328, 3758096384, 7784628224, 16106127360, 33285996544
Offset: 0
a(2)=4 since 2314, 2341,3124 and 4123 are the only 132-avoiding permutations of 1234 containing exactly one increasing subsequence of length 3.
x + 4*x^2 + 12*x^3 + 32*x^4 + 80*x^5 + 192*x^6 + 448*x^7 + ...
a(5) = 1*0 + 5*1 + 10*2 + 10*3 + 5*4 + 1*5 = 80, with 1,5,10,10,5,1 the 5th row of Pascal's triangle. - _J. M. Bergot_, Apr 29 2014
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 131.
- Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 282.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Franklin T. Adams-Watters, Table of n, a(n) for n = 0..500
- Rémi Abgrall and Wasilij Barsukow, Extensions of Active Flux to arbitrary order of accuracy, arXiv:2208.14476 [math.NA], 2022.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- F. S. Al-Kharousi, A. Umar, and M. M. Zubairu, On injective partial Catalan monoids, arXiv:2501.00285 [math.GR], 2024. See p. 9.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
- Douglas W. Bass and I. Hal Sudborough, Hamilton decompositions and (n/2)-factorizations of hypercubes, J. Graph Algor. Appl., Vol. 7, No. 1 (2003), pp. 79-98.
- Nicolas Bonichon and Pierre-Jean Morel, Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.
- Harlan J. Brothers, Pascal's Prism: Supplementary Material.
- David Callan, A recursive bijective approach to counting permutations containing 3-letter patterns, arXiv:math/0211380 [math.CO], 2002.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Frank Ellermann, Illustration of binomial transforms
- Mohamed Elkadi and Bernard Mourrain, Symbolic-numeric methods for solving polynomial equations and applications, Chap 3. of A. Dickenstein and I. Z. Emiris, eds., Solving Polynomial Equations, Springer, 2005, pp. 126-168. See p. 152.
- Alejandro Erickson, Frank Ruskey, Mark Schurch and Jennifer Woodcock, Auspicious Tatami Mat Arrangements, The 16th Annual International Computing and Combinatorics Conference (COCOON 2010), July 19-21, Nha Trang, Vietnam. LNCS 6196 (2010) 288-297.
- Samuele Giraudo, Pluriassociative algebras I: The pluriassociative operad, Advances in Applied Mathematics, Vol. 77 (2016), pp. 1-42, arXiv preprint, arXiv:1603.01040 [math.CO], 2016.
- Frank A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424.
- Frank A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424. (Annotated scanned copy)
- Frank A. Haight, Letter to N. J. A. Sloane, n.d.
- V. E. Hoggatt, Jr., Letter to N. J. A. Sloane, Jul 06, 1976
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=4, q=-4.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 408. (Dead link)
- Milan Janjić, Two Enumerative Functions.
- Milan Janjić and Boris Petković, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
- Milan Janjić and Boris Petković, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- C. W. Jones, J. C. P. Miller, J. F. C. Conn, and R. C. Pankhurst, Tables of Chebyshev polynomials, Proc. Roy. Soc. Edinburgh. Sect. A. 62, (1946). 187-203.
- Kenji Kimura and Saburo Higuchi, Monte Carlo estimation of the number of tatami tilings, International Journal of Modern Physics C, Vol. 27, No. 11 (2016), 1650128, arXiv preprint, arXiv:1509.05983 [cond-mat.stat-mech], 2015-2016, eq. (1).
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, University of Kentucky Research Reports (2004). (Dead link)
- Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243 [math.CO], 2012.
- T. Y. Lam, On the diagonalization of quadratic forms, Math. Mag., 72 (1999), 231-235 (see page 234).
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. See Eq.(3).
- Duško Letić, Nenad Cakić, Branko Davidović, Ivana Berković and Eleonora Desnica, Some certain properties of the generalized hypercubical functions, Advances in Difference Equations, 2011, 2011:60.
- Toufik Mansour and Armend Sh. Shabani, Bargraphs in bargraphs, Turkish Journal of Mathematics (2018) Vol. 42, Issue 5, 2763-2773.
- Ronald Orozco López, Deformed Differential Calculus on Generalized Fibonacci Polynomials, arXiv:2211.04450 [math.CO], 2022.
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- Michael Penn, on the alternating sum of subsets, YouTube video, 2021.
- Michael Penn, Rare proof of well-known sum, YouTube video, 2023.
- Aleksandar Petojević, A Note about the Pochhammer Symbol, Mathematica Moravica, Vol. 12-1 (2008), 37-42.
- Maxwell Phillips, Ahmed Ammar, and Firas Hassan, A Generalized Multi-Level Structure for High-Precision Binary Decoders, IEEE 67th Int'l Midwest Symp. Circ. Sys. (MWSCAS 2024), 42-46.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Lara Pudwell, Nathan Chenette and Manda Riehl, Statistics on Hypercube Orientations, AMS Special Session on Experimental and Computer Assisted Mathematics, Joint Mathematics Meetings (Denver 2020).
- Lara Pudwell, Connor Scholten, Tyler Schrock and Alexa Serrato, Noncontiguous pattern containment in binary trees, ISRN Comb. 2014, Article ID 316535, 8 p. (2014), chapter 5.2.
- Aaron Robertson, Permutations containing and avoiding 123 and 132 patterns, Discrete Math. and Theoret. Computer Sci., 3 (1999), 151-154.
- Aaron Robertson, Herbert S. Wilf and Doron Zeilberger, Permutation patterns and continued fractions, Electr. J. Combin. 6, 1999, #R38.
- Thomas Selig and Haoyue Zhu, Complete non-ambiguous trees and associated permutations: connections through the Abelian sandpile model, arXiv:2303.15756 [math.CO], 2023, see p. 16.
- Jeffrey Shallit, Letter to N. J. A. Sloane Mar 14, 1979, concerning A001787, A005209, A005210, A005211.
- Nathan Sun, On d-permutations and Pattern Avoidance Classes, arXiv:2208.08506 [math.CO], 2022.
- Eric Weisstein's World of Mathematics, Hypercube.
- Eric Weisstein's World of Mathematics, Hypercube Graph.
- Eric Weisstein's World of Mathematics, Leibniz Harmonic Triangle.
- Eric Weisstein's World of Mathematics, Maximal Clique.
- Eric Weisstein's World of Mathematics, Maximum Clique.
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008).
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Cf.
A053109,
A001788,
A001789,
A000337,
A130300,
A134083,
A002064,
A027471,
A003945,
A059670,
A167591,
A059260,
A016777,
A212697,
A000079,
A263646.
-
a001787 n = n * 2 ^ (n - 1)
a001787_list = zipWith (*) [0..] $ 0 : a000079_list
-- Reinhard Zumkeller, Jul 11 2014
-
[n*2^(n-1): n in [0..40]]; // Vincenzo Librandi, Feb 04 2016
-
spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..29); # Zerinvary Lajos, Oct 09 2006
A001787:=1/(2*z-1)^2; # Simon Plouffe in his 1992 dissertation, dropping the initial zero
-
Table[Sum[Binomial[n, i] i, {i, 0, n}], {n, 0, 30}] (* Geoffrey Critzer, Mar 18 2009 *)
f[n_] := n 2^(n - 1); f[Range[0, 40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
Array[# 2^(# - 1) &, 40, 0] (* Harvey P. Dale, Jul 26 2011 *)
Join[{0}, Table[n 2^(n - 1), {n, 20}]] (* Eric W. Weisstein, Dec 01 2017 *)
Join[{0}, LinearRecurrence[{4, -4}, {1, 4}, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
CoefficientList[Series[x/(-1 + 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
-
{a(n) = if( n<0, 0, n * 2^(n-1))}
-
concat(0, Vec(x/(1-2*x)^2 + O(x^50))) \\ Altug Alkan, Nov 03 2015
-
def A001787(n): return n*(1<Chai Wah Wu, Nov 14 2022
A127670
Discriminants of Chebyshev S-polynomials A049310.
Original entry on oeis.org
1, 4, 32, 400, 6912, 153664, 4194304, 136048896, 5120000000, 219503494144, 10567230160896, 564668382613504, 33174037869887488, 2125764000000000000, 147573952589676412928, 11034809241396899282944, 884295678882933431599104, 75613185918270483380568064
Offset: 1
n=3: The zeros are [sqrt(2),0,-sqrt(2)]. The Vn(xn[1],...,xn[n]) matrix is [[1,1,1],[sqrt(2),0,-sqrt(2)],[2,0,2]]. The squared determinant is 32 = a(3). - _Wolfdieter Lang_, Aug 07 2011
- Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf.
- G. Barequet and M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, 31st International Symposium on Computational Geometry (SoCG'15). Editors: Lars Arge and János Pach; pp. 19-22, 2015.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990; p. 219 for T and U polynomials.
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Andrei Asinowski, Gill Barequet, Ronnie Barequet, and Gunter Rote, Proper n-Cell Polycubes in n - 3 Dimensions, Journal of Integer Sequences, Vol. 15 (2012), #12.8.4.
- Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012. See Th. 1. [From _N. J. A. Sloane_, Oct 16 2010]
- R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional polycubes, Combinatorica 30 (2010), pp. 257-275.
- Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Star of David and other patterns in the Hosoya-like polynomials triangles, Journal of Integer Sequences, Vol. 21 (2018), Article 18.4.6.
- Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
- Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
- Rigoberto Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.
- M. Haiman, Conjectures on the quotient ring by diagonal invariants, preprint, 1993.
- M. Haiman, Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin. 3 (1994), no. 1, 17--76.
- O. Khorunzhiy, Enumeration of tree-type diagrams assembled from oriented chains of edges, arXiv:2207.00766 [math.CO], 2022.
- Andrew Snowden, Measures for the colored circle, arXiv:2302.08699 [math.CO], 2023.
- Eric Weisstein's World of Mathematics, Discriminant
- Eric Weisstein's World of Mathematics, Morgan-Voyce Polynomials
- Eric Weisstein's World of Mathematics, Fibonacci Polynomial
Cf.
A243953,
A006645,
A001629,
A001871,
A006645,
A007701,
A045618,
A045925,
A093967,
A193678,
A317404,
A317405,
A317408,
A317451,
A318184,
A318197.
A317403 is essentially the same sequence.
A001870
Expansion of (1-x)/(1 - 3*x + x^2)^2.
Original entry on oeis.org
1, 5, 19, 65, 210, 654, 1985, 5911, 17345, 50305, 144516, 411900, 1166209, 3283145, 9197455, 25655489, 71293590, 197452746, 545222465, 1501460635, 4124739581, 11306252545, 30928921224, 84451726200, 230204999425
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Elena Barcucci, Renzo Pinzani, and Renzo Sprugnoli , Directed column-convex polyominoes by recurrence relations, Lecture Notes in Computer Science, No. 668, Springer, Berlin (1993), pp. 282-298.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
- Éva Czabarka, Rigoberto Flórez, and Leandro Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
- Éva Czabarka, Rigoberto Flórez, Leandro Junes, and José L. Ramírez, Enumerations of peaks and valleys on non-decreasing Dyck paths, Discrete Math. 341 (10) (2018), 2789-2807. See Cor. 6.
- Emeric Deutsch and Helmut Prodinger, A bijection between directed column-convex polyominoes and ordered trees of height at most three, Theoretical Comp. Science, 307, 2003, 319-325.
- Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, Counting Subwords in Non-Decreasing Dyck Paths, Journal of Integer Sequences, Vol. 28 (2025), Article 25.1.6. See pp. 5-6, 14-15, 17, 19.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 23.
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 15.
- Pieter Moree, Convoluted Convolved Fibonacci Numbers, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.2.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- John Riordan, Notes to N. J. A. Sloane, Jul. 1968
- John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
-
F:=Fibonacci;; List([0..30], n-> ((n+1)*F(2*n+3)+(2*n+3)*F(2*(n+1)))/5); # G. C. Greubel, Jul 15 2019
-
a001870 n = a001870_list !! n
a001870_list = uncurry c $ splitAt 1 $ tail a000045_list where
c us vs'@(v:vs) = (sum $ zipWith (*) us vs') : c (v:us) vs
-- Reinhard Zumkeller, Oct 31 2013
-
I:=[1, 5, 19, 65]; [n le 4 select I[n] else 6*Self(n-1) -11*Self(n-2)+6*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 10 2012
-
A001870:=-(-1+z)/(z**2-3*z+1)**2; # Simon Plouffe in his 1992 dissertation.
-
CoefficientList[Series[(1-x)/(1-3*x+x^2)^2,{x,0,40}],x] (* Vincenzo Librandi, Jun 10 2012 *)
LinearRecurrence[{6,-11,6,-1},{1,5,19,65},30] (* Harvey P. Dale, Aug 17 2013 *)
With[{F=Fibonacci}, Table[((n+1)*F[2*n+3]+(2*n+3)*F[2*n+2])/5, {n,0,30}]] (* G. C. Greubel, Jul 15 2019 *)
-
Vec((1-x)/(1-3*x+x^2)^2+O(x^30)) \\ Charles R Greathouse IV, Sep 23 2012
-
f=fibonacci; [((n+1)*f(2*n+3)+(2*n+3)*f(2*n+2))/5 for n in (0..30)] # G. C. Greubel, Jul 15 2019
A059502
a(n) = (3*n*F(2n-1) + (3-n)*F(2n))/5 where F() = Fibonacci numbers A000045.
Original entry on oeis.org
0, 1, 3, 9, 27, 80, 234, 677, 1941, 5523, 15615, 43906, 122868, 342409, 950727, 2631165, 7260579, 19982612, 54865566, 150316973, 411015705, 1121818311, 3056773383, 8316416134, 22593883752, 61301547025, 166118284299, 449639574897, 1215751720491, 3283883157848
Offset: 0
The array (see A059503) begins
1 3 9 27 80 ...
2 5 14 40 ...
3 7 19 ...
4 9 5 ...
- Harry J. Smith, Table of n, a(n) for n = 0..200
- Sergi Elizalde, Rigoberto Flórez, and José Luis Ramírez, Enumerating symmetric peaks in non-decreasing Dyck paths, Ars Mathematica Contemporanea (2021).
- Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, Counting Subwords in Non-Decreasing Dyck Paths, Journal of Integer Sequences, Vol. 28 (2025), Article 25.1.6. See pp. 17, 19.
- Index entries for two-way infinite sequences
- Index entries for sequences related to boustrophedon transform
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
-
[(3*n*Fibonacci(2*n-1)+(3-n)*Fibonacci(2*n))/5: n in [0..100]]; // Vincenzo Librandi, Apr 23 2011
-
Table[(3n Fibonacci[2n-1]+(3-n)Fibonacci[2n])/5,{n,0,30}] (* or *) CoefficientList[Series[x(1-x)(1-2x)/(1-3x+x^2)^2,{x,0,30}],x] (* Harvey P. Dale, Apr 23 2011 *)
-
a(n)=(3*n*fibonacci(2*n-1)+(3-n)*fibonacci(2*n))/5
A125662
A convolution triangle of numbers based on A001906 (even-indexed Fibonacci numbers).
Original entry on oeis.org
1, 3, 1, 8, 6, 1, 21, 25, 9, 1, 55, 90, 51, 12, 1, 144, 300, 234, 86, 15, 1, 377, 954, 951, 480, 130, 18, 1, 987, 2939, 3573, 2305, 855, 183, 21, 1, 2584, 8850, 12707, 10008, 4740, 1386, 245, 24, 1, 6765, 26195, 43398, 40426, 23373, 8715, 2100, 316, 27, 1
Offset: 0
Triangle begins:
1;
3, 1;
8, 6, 1;
21, 25, 9, 1;
55, 90, 51, 12, 1;
...
Triangle [0,3,-1/3,1/3,0,0,0,...] DELTA [1,0,0,0,0,0,...] begins:
1;
0, 1;
0, 3, 1;
0, 8, 6, 1;
0, 21, 25, 9, 1;
0, 55, 90, 51, 12, 1;
...
Diagonal sums:
A000244(powers of 3).
Cf. Triangle of coefficients of Chebyshev's S(n,x+k) polynomials:
A207824,
A207823,
A125662,
A078812,
A101950,
A049310,
A104562,
A053122,
A207815,
A159764,
A123967 for k = 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5 respectively.
-
m:=12;
R:=PowerSeriesRing(Integers(), m+2);
A125662:= func< n,k | Abs( Coefficient(R!( Evaluate(ChebyshevU(n+1), (3-x)/2) ), k) ) >;
[A125662(n,k): k in [0..n], n in [0..m]]; // G. C. Greubel, Aug 20 2023
-
With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 3 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
Table[Abs[CoefficientList[ChebyshevU[n,(x-3)/2], x]], {n,0,12}]//Flatten (* G. C. Greubel, Aug 20 2023 *)
-
def A125662(n,k): return abs( ( chebyshev_U(n, (3-x)/2) ).series(x, n+2).list()[k] )
flatten([[A125662(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 20 2023
A060934
Second column of Lucas bisection triangle (even part).
Original entry on oeis.org
1, 17, 80, 303, 1039, 3364, 10493, 31885, 95032, 279051, 809771, 2327372, 6636025, 18794633, 52925984, 148303719, 413768263, 1150029940, 3185625077, 8797726981, 24230897416, 66574108227
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- É. Czabarka, R. Flórez, and L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
-
[2*n*Lucas(2*n+2) + Fibonacci(2*n+2): n in [0..30]]; // G. C. Greubel, Apr 09 2021
-
LinearRecurrence[{6,-11,6,-1}, {1,17,80,303}, 31] (* G. C. Greubel, Apr 09 2021 *)
CoefficientList[Series[(1+11x-11x^2+4x^3)/(1-3x+x^2)^2,{x,0,30}],x] (* Harvey P. Dale, Aug 28 2021 *)
-
[2*n*lucas_number2(2*n+2,1,-1) + fibonacci(2*n+2) for n in (0..30)] # G. C. Greubel, Apr 09 2021
A129722
Number of 0's in even position in all Fibonacci binary words of length n. A Fibonacci binary word is a binary word having no 00 subword.
Original entry on oeis.org
0, 0, 1, 1, 5, 6, 19, 25, 65, 90, 210, 300, 654, 954, 1985, 2939, 5911, 8850, 17345, 26195, 50305, 76500, 144516, 221016, 411900, 632916, 1166209, 1799125, 3283145, 5082270, 9197455, 14279725, 25655489, 39935214, 71293590, 111228804, 197452746, 308681550
Offset: 0
a(4)=5 because in 1110', 1111, 1101, 10'10', 10'11, 0110', 0111 and 0101 one has altogether five 0's in even position (marked by ').
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Moussa Benoumhani, On the Modes of the Independence Polynomial of the Centipede, Journal of Integer Sequences, Vol. 15 (2012), #12.5.1.
- É. Czabarka, R. Flórez, and L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
- Index entries for linear recurrences with constant coefficients, signature (1,4,-3,-4,1,1).
-
G:=z^2/(1-z-z^2)^2/(1+z-z^2): Gser:=series(G,z=0,45): seq(coeff(Gser,z,n),n=0..42);
-
CoefficientList[Series[x^2/((1 + x - x^2)*(1 - x - x^2)^2), {x,0,50}], x] (* G. C. Greubel, Mar 09 2017 *)
LinearRecurrence[{1,4,-3,-4,1,1},{0,0,1,1,5,6},40] (* Harvey P. Dale, Apr 02 2018 *)
-
x='x+O('x^50); concat([0,0], Vec(x^2/((1 + x - x^2)*(1 - x - x^2)^2))) \\ G. C. Greubel, Mar 09 2017
A197649
a(n) = Sum_{k=0..n} k*Fibonacci(2*k).
Original entry on oeis.org
0, 1, 7, 31, 115, 390, 1254, 3893, 11789, 35045, 102695, 297516, 853932, 2432041, 6881395, 19361995, 54214939, 151164018, 419910354, 1162585565, 3209268665, 8835468881, 24266461007, 66501634776, 181882282200, 496539007825, 1353272290399, 3682496714743
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..2384
- Paul Barry, Notes on the Hankel transform of linear combinations of consecutive pairs of Catalan numbers, arXiv:2011.10827 [math.CO], 2020.
- Matthew Blair, Rigoberto Flórez, and Antara Mukherjee, Honeycombs in the Pascal triangle and beyond, arXiv:2203.13205 [math.HO], 2022. See p. 5.
- Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, Counting Subwords in Non-Decreasing Dyck Paths, J. Int. Seq. (2025) Vol. 28, Art. No. 25.1.6. See pp. 15, 17, 19.
- E. Pérez Herrero, A small Fibonacci sum, Psychedelic Geometry Blogspot
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
Cf.
A023619 (inverse binomial transform).
-
a:=n->sum(k*fibonacci(2*k),n= 0..n):seq(a(n), n=0..25);
-
Table[Sum[k*Fibonacci[2*k], {k, 0, n}], {n, 0, 50}] (* T. D. Noe, Oct 17 2011 *)
A238846
Expansion of (1-2*x)/(1-3*x+x^2)^2.
Original entry on oeis.org
1, 4, 13, 40, 120, 354, 1031, 2972, 8495, 24110, 68016, 190884, 533293, 1484020, 4115185, 11375764, 31358376, 86223942, 236540915, 647556620, 1769374931, 4826148314, 13142564448, 35736448200, 97037995225, 263156279524, 712795854421, 1928547574912, 5212430732760
Offset: 0
a(0) = 1*1 = 1;
a(1) = 1*3 + 1*1 = 4;
a(2) = 1*8 + 1*3 + 2*1 = 13;
a(3) = 1*21 + 1*8 + 2*3 + 5*1 = 40;
a(4) = 1*55 + 1*21 + 2*8 + 5*3 + 13*1 = 120; etc. (from first recurrence formula).
a(0) = 3*0 - 0 + 1 = 1;
a(1) = 3*1 - 0 + 1 = 4;
a(2) = 3*4 - 1 + 2 = 13;
a(3) = 3*13 - 4 + 5 = 40;
a(4) = 3*40 - 13 + 13 = 120; etc (from second recurrence formula).
G.f. = 1 + 4*x + 13*x^2 + 40*x^3 + 120*x^4 + 354*x^5 + 1031*x^6 + ... - _Michael Somos_, Nov 23 2021
- Michael De Vlieger, Table of n, a(n) for n = 0..2385
- Sergi Elizalde, Rigoberto Flórez, and José Luis Ramírez, Enumerating symmetric peaks in non-decreasing Dyck paths, Ars Mathematica Contemporanea (2021).
- David Eppstein, Non-crossing Hamiltonian Paths and Cycles in Output-Polynomial Time, arXiv:2303.00147 [cs.CG], 2023, p. 20.
- Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, Counting Subwords in Non-Decreasing Dyck Paths, J. Int. Seq. (2025) Vol. 28, Art. No. 25.1.6. See pp. 6, 15, 17, 19.
- Valentin Ovsienko, Shadow sequences of integers, from Fibonacci to Markov and back, arXiv:2111.02553 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
-
LinearRecurrence[{6, -11, 6, -1}, {1, 4, 13, 40}, 30] (* Bruno Berselli, Mar 06 2014 *)
a[ n_] := If[n < 0, SeriesCoefficient[ x^3*(2 - x)/(1 - 3*x + x^2)^2, {x, 0, -n}], SeriesCoefficient[ (1 - 2*x)/(1 - 3*x + x^2)^2, {x, 0, n}]]; (* Michael Somos, Nov 23 2021 *)
-
{a(n) = if(n<0, polcoeff( x^3*(2-x)/(1-3*x+x^2)^2 + x*O(x^-n), -n), polcoeff( (1-2*x)/(1-3*x+x^2)^2 + x*O(x^n), n))}; /* Michael Somos, Nov 23 2021 */
A086804
a(0)=0; for n > 0, a(n) = (n+1)^(n-2)*2^(n^2).
Original entry on oeis.org
0, 1, 16, 2048, 1638400, 7247757312, 164995463643136, 18446744073709551616, 9803356117276277820358656, 24178516392292583494123520000000, 271732164163901599116133024293512544256
Offset: 0
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 05 2003
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990; p. 219, 5.1.2.
- Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
- Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Star of David and other patterns in the Hosoya-like polynomials triangles, Journal of Integer Sequences, Vol. 21 (2018), Article 18.4.6.
- R. Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.
- R. Flórez, R. Higuita and A. Mukherjees, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
- Eric Weisstein's World of Mathematics, Discriminant
- Eric Weisstein's World of Mathematics, Chebyshev Polynomial of the Second Kind
- Eric Weisstein's World of Mathematics, Pell Polynomial
- Index entries for sequences related to Chebyshev polynomials.
Cf.
A007701,
A127670 (discriminant for S-polynomials),
A006645,
A001629,
A001871,
A006645,
A007701,
A045618,
A045925,
A093967,
A193678,
A317404,
A317405,
A317408,
A317451,
A318184,
A318197.
-
[0] cat [(n+1)^(n-2)*2^(n^2): n in [1..10]]; // G. C. Greubel, Nov 11 2018
-
Join[{0},Table[(n+1)^(n-2) 2^n^2,{n,10}]] (* Harvey P. Dale, May 01 2015 *)
-
a(n)=if(n<1,0,(n+1)^(n-2)*2^(n^2))
-
a(n)=if(n<1,0,n++; poldisc(poltchebi(n)'/n))
Showing 1-10 of 24 results.
Comments