cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060923 Bisection of Lucas triangle A060922: even-indexed members of column sequences of A060922 (not counting leading zeros).

Original entry on oeis.org

1, 4, 1, 11, 17, 1, 29, 80, 39, 1, 76, 303, 315, 70, 1, 199, 1039, 1687, 905, 110, 1, 521, 3364, 7470, 6666, 2120, 159, 1, 1364, 10493, 29634, 37580, 20965, 4311, 217, 1, 3571, 31885, 109421, 181074, 148545
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Examples

			Triangle begins:
  {1};
  {4,1};
  {11,17,1};
  {29,80,39,1};
  ...
pLe(2,x) = 1+11*x-11*x^2+4*x^3.
		

Crossrefs

Row sums give A060926.
Column sequences (without leading zeros) are, for m=0..3: A002878, A060934-A060936.
Companion triangle A060924 (odd part).
Cf. A060922.

Formula

a(n, m) = A060922(2*n-m, m).
a(n, m) = ((2*(n-m)+1)*A060924(n-1, m-1) + 2*(4*n-3*m)*a(n-1, m-1) + 4*(2*n-m-1)*A060924(n-2, m-1))/(5*m), m >= n >= 1; a(n, 0)= A002878(n); else 0.
G.f. for column m >= 0: x^m*pLe(m+1, x)/(1-3*x+x^2)^(m+1), where pLe(n, x) := Sum_{m=0..n+floor(n/2)} A061186(n, m)*x^m are the row polynomials of the (signed) staircase A061186.
T(n,k) = 3*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) + 2*T(n-2,k-1) - T(n-2,k-2) + 4*T(n-3,k-2), T(0,0) = 1, T(1,0) = 4, T(1,1) = 1, T(2,0) = 11, T(2,1) = 17, T(2,2) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 21 2014

A061169 Third column of Lucas bisection triangle (even part).

Original entry on oeis.org

1, 39, 315, 1687, 7470, 29634, 109421, 384105, 1298613, 4264835, 13686456, 43102644, 133636825, 408900987, 1237114335, 3706490479, 11010661266, 32463981270, 95081107013, 276820695645, 801633669561
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Numerator of g.f. is row polynomial Sum_{m=0..4} A061186(3,m)*x^m.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + x) (1 + 29 x - 35 x^2 + 12 x^3)/(1 - 3 x + x^2)^3, {x, 0, 20}], x] (* Michael De Vlieger, Feb 06 2023 *)

Formula

a(n) = A060923(n+2, 2).
G.f.: (1+x)*(1+29*x-35*x^2+12*x^3)/(1-3*x+x^2)^3.

A061170 Fourth column of Lucas bisection triangle (even part).

Original entry on oeis.org

1, 70, 905, 6666, 37580, 181074, 786715, 3176210, 12139859, 44471340, 157483176, 542468100, 1826073525, 6028577566, 19573942365, 62643859374, 197971385860, 618724626390, 1914707164559, 5873145245930
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Numerator of g.f. is row polynomial Sum_{m=0..6} A061186(4,m)*x^m.

Crossrefs

Cf. A002878(n) = A060923(n, 0).

Formula

a(n) = A060923(n+3, 3).
G.f.: (1+58*x+123*x^2-278*x^3+193*x^4-72*x^5+16*x^6)/(1-3*x+x^2)^4.
Showing 1-3 of 3 results.