cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A023610 Convolution of Fibonacci numbers and {F(2), F(3), F(4), ...}.

Original entry on oeis.org

1, 3, 7, 15, 30, 58, 109, 201, 365, 655, 1164, 2052, 3593, 6255, 10835, 18687, 32106, 54974, 93845, 159765, 271321, 459743, 777432, 1312200, 2211025, 3719643, 6248479, 10482351, 17562870, 29391490, 49132669, 82048737, 136884293, 228160495, 379975140, 632293452
Offset: 0

Views

Author

Keywords

Comments

a(n-2) + 1 is the number of (3412,1243)-, (3412,2134)- and (3412,1324)-avoiding involutions in S_n, n>1. - Ralf Stephan, Jul 06 2003
The number of terms in all ordered partitions of (n+1) using only ones and twos. For example, a(3)=15 because there are 15 terms in 1+1+1+1;2+1+1;1+2+1;1+1+2;2+2 - Geoffrey Critzer, Apr 07 2008
a(n) is the number of n-matchings in the graph obtained by a zig-zag triangulation of a convex (2n+1)-gon. Example: a(2)=7 because in the triangulation of the convex pentagon ABCDEA with diagonals AD and AC we have 7 2-matchings: {AB,CD},{AB,DE},{BC,AD},{BC,DE},{BC,EA},{CD,EA} and {DE,AC}. - Emeric Deutsch, Dec 25 2004
Partial sums of A029907. First differences of A002940. - Peter Bala, Oct 24 2007
Equals row sums of triangle A144154. - Gary W. Adamson, Sep 12 2008
Equals the number of 1's in Fibonacci Maximal notation for subsets of
(1, 2, 3, 5, 8, 13, ...) terms. For example (cf. A181630): 4, 5, and 6 are the 3 terms 101, 110, and 111 in Fibonacci Maximal. Total number of 1's for those terms = 7 = a(2). - Gary W. Adamson, Nov 02 2010
a(n) is half the number of strokes needed to draw all the domino tilings of a 2 X (n+2) rectangle. - Roberto Tauraso, Mar 15 2014
a(n) is the total number of 1's in all (n+1)-bit dual Zeckendorf representations of integers (A104326). For example, a(2) = 7 counts the 1's in 101, 110, 111. - Shenghui Yang, Feb 09 2025

Crossrefs

Cf. A000045 (Fibonacci numbers).
Column 1 of triangle A063967.

Programs

  • Haskell
    a023610 n = a023610_list !! n
    a023610_list = f [1] $ drop 3 a000045_list where
       f us (v:vs) = (sum $ zipWith (*) us $ tail a000045_list) : f (v:us) vs
    -- Reinhard Zumkeller, Jan 18 2014
    
  • Mathematica
    Table[Sum[Binomial[n - i, i]*(n - i), {i, 0, n}], {n, 1, 33}] (* Geoffrey Critzer, May 04 2009 *)
  • PARI
    a(n)=(n+2)*fibonacci(n+4)/5+(n-1)*fibonacci(n+2)/5 \\ Charles R Greathouse IV, Jun 11 2015
  • Sage
    def A023610():
        a, b, c, d = 1, 3, 7, 15
        while True:
            yield a
            a, b, c, d = b, c, d, 2*(d-b)+c-a
    a = A023610(); [next(a) for i in range(33)]  # Peter Luschny, Nov 20 2013
    

Formula

O.g.f.: (x+1)/(1-x-x^2)^2. - Len Smiley, Dec 11 2001
a(n) = (1/5)*((n+2)*F(n+4) + (n-1)*F(n+2)), with F(n)=A000045(n). - Ralf Stephan, Jul 06 2003
a(n) = Sum_{k=0..n+1} (n-k+1)*binomial(n-k+1, k). - Paul Barry, Nov 05 2005
Recurrence: a(n+2) = a(n+1) + a(n) + Fib(n+4), n >= 0. For n >= 2, a(n-2) = (-1)^n*((-2n+3)*Fib(-n) - (-n)*Fib(-n-1))/5 = (-1)^n*A010049(-n), the second-order Fibonacci numbers of negative index, where Fib(-n) = (-1)^(n+1)*Fib(n). - Peter Bala, Oct 24 2007
a(n) = (n+1)*F(n+2) - A001629(n+1) where F(n) is the n-th Fibonacci number. - Geoffrey Critzer, Apr 07 2008
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4), n >= 4. - L. Edson Jeffery, Mar 29 2013
a(n+1) = A004798(n) + A000045(n+2) for n >= 0. - John Molokach, Jul 04 2013
a(n) = A001629(n+1) + A001629(n+2). - Philippe Deléham, Oct 30 2013
E.g.f.: exp(x/2)*(5*(5 + 7*x)*cosh(sqrt(5)*x/2) + sqrt(5)*(11 + 15*x)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 04 2023

A046741 Triangle read by rows giving number of arrangements of k dumbbells on 2 X n grid (n >= 0, k >= 0).

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 7, 11, 3, 1, 10, 29, 26, 5, 1, 13, 56, 94, 56, 8, 1, 16, 92, 234, 263, 114, 13, 1, 19, 137, 473, 815, 667, 223, 21, 1, 22, 191, 838, 1982, 2504, 1577, 424, 34, 1, 25, 254, 1356, 4115, 7191, 7018, 3538, 789, 55, 1, 28, 326, 2054, 7646, 17266, 23431
Offset: 0

Views

Author

Keywords

Comments

Equivalently, T(n,k) is the number of k-matchings in the ladder graph L_n = P_2 X P_n. - Emeric Deutsch, Dec 25 2004
In other words, triangle of number of monomer-dimer tilings on (2,n)-block with k dimers. If z marks the size of the block and t marks the dimers, then it is easy to see that the g.f. for indecomposable tilings, i.e., those that cannot be split vertically into smaller tilings, is g = (1+t)*z + t^2*z^2 + 2*t*z^2 + 2*t^2*z^3 + 2*t^3*z^4 + ... = (1+t)*z + t^2*z^2 + 2*t*z^2/(1-t*z); then the g.f. is 1/(1-g) = (1-t*z)/(1 - z - 2*t*z - t*z^2 + t^3*z^3) (see eq. (4) of the Grimson reference). From this the recurrence of the McQuistan & Lichtman reference follows at once. - Emeric Deutsch, Oct 16 2006

Examples

			T(3, 2)=11 because in the 2 X 3 grid with vertex set {O(0, 0), A(1, 0), B(2, 0), C(2, 1), D(1, 1), E(0, 1)} and edge set {OA, AB, ED, DC, UE, AD, BC} we have the following eleven 2-matchings: {OA, BC}, {OA, DC}, {OA, ED}, {AB, DC}, {AB, ED}, {AB, OE}, {BC, AD}, {BC, ED}, {BC, OA}, {BC, OE} and {DC, OE}. - _Emeric Deutsch_, Dec 25 2004
Triangle starts:
  1;
  1,  1;
  1,  4,  2;
  1,  7, 11,  3;
  1, 10, 29, 26,  5;
		

Crossrefs

Diagonals give A002940, A002941, A002889.
Row sums yield A030186. T(n,n) = Fibonacci(n+1) (A000045).

Programs

  • Haskell
    a046741 n k = a046741_tabl !! n !! k
    a046741_row n = a046741_tabl !! n
    a046741_tabl = [[1], [1, 1], [1, 4, 2]] ++ f [1] [1, 1] [1, 4, 2] where
       f us vs ws = ys : f vs ws ys where
         ys = zipWith (+) (zipWith (+) (ws ++ [0]) ([0] ++ map (* 2) ws))
                          (zipWith (-) ([0] ++ vs ++ [0]) ([0, 0, 0] ++ us))
    -- Reinhard Zumkeller, Jan 18 2014
  • Maple
    F[0]:=1:F[1]:=1+t:F[2]:=1+4*t+2*t^2:for n from 3 to 10 do F[n]:=sort(expand((1+2*t)*F[n-1]+t*F[n-2]-t^3*F[n-3])) od: for n from 0 to 10 do seq(coeff(t*F[n],t^k),k=1..n+1) od;# yields sequence in triangular form - Emeric Deutsch
  • Mathematica
    p[n_] := p[n] = (1 + 2t) p[n-1] + t*p[n-2] - t^3*p[n-3]; p[0] = 1; p[1] = 1+t; p[2] = 1 + 4t + 2t^2; Flatten[Table[CoefficientList[Series[p[n], {t, 0, n}], t], {n, 0, 10}]][[;; 62]] (* Jean-François Alcover, Jul 13 2011, after Emeric Deutsch *)
    CoefficientList[LinearRecurrence[{1 + 2 x, x, -x^3}, {1 + x, 1 + 4 x + 2 x^2, 1 + 7 x + 11 x^2 + 3 x^3}, {0, 10}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
    CoefficientList[CoefficientList[Series[-(1 + x z) (-1 - x + x^2 z)/(1 - z - 2 x z - x z^2 + x^3 z^3), {z, 0, 10}], z], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)

Formula

From Emeric Deutsch, Dec 25 2004: (Start)
The row generating polynomials P[n] satisfy P[n] = (1 + 2*t)*P[n-1] + t*P[n-2] - t^3*P[n-3] with P[0] = 1, P[1] = 1+t, P[2] = 1 + 4*t + 2*t^2.
G.f.: (1-t*z)/(1 - z - 2*t*z - t*z^2 + t^3*z^3). (End)
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k-1) - T(n-3,k-3).

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000
Formula fixed by Reinhard Zumkeller, Jan 18 2014

A002941 Arrays of dumbbells.

Original entry on oeis.org

1, 7, 29, 94, 263, 667, 1577, 3538, 7622, 15900, 32314, 64274, 125561, 241569, 458715, 861242, 1601081, 2950693, 5396209, 9801012, 17692092, 31759800, 56727588, 100861716, 178585489, 314995915, 553650761, 969967510, 1694235803
Offset: 1

Views

Author

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
  • R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
  • R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002941 n = a002941_list !! (n-1)
    a002941_list = 1 : 7 : 29 : zipWith (+)
       (zipWith (-) (map (* 2) $ drop 2 a002941_list) a002941_list)
       (drop 2 $ zipWith (+) (tail a002940_list) a002940_list)
    -- Reinhard Zumkeller, Jan 18 2014
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)^2/((1-x-x^2)^3*(1-x)^2) )); // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    CoefficientList[(1+x)^2/((1-x-x^2)^3*(1-x)^2) + O[x]^30, x] (* Jean-François Alcover, Jul 31 2018 *)
    LinearRecurrence[{5,-7,-2,10,-2,-5,1,1},{1,7,29,94,263,667,1577,3538},30] (* Harvey P. Dale, Aug 29 2021 *)
  • PARI
    x='x+O('x^30); Vec((1+x)^2/((1-x-x^2)^3*(1-x)^2)) \\ Altug Alkan, Jul 31 2018
    
  • Sage
    ((1+x)^2/((1-x-x^2)^3*(1-x)^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019

Formula

G.f.: (1+x)^2/((1-x-x^2)^3*(1-x)^2).
a(n) = 2*a(n-1) - a(n-3) + A002940(n) + A002940(n-1).

Extensions

More terms from Henry Bottomley, Jun 02 2000

A002889 Arrays of dumbbells.

Original entry on oeis.org

1, 10, 56, 234, 815, 2504, 7018, 18336, 45328, 107160, 244198, 539656, 1161987, 2446906, 5054440, 10266850, 20549117, 40595568, 79271188, 153190480, 293278496, 556737696, 1048772300, 1961855408, 3646420325, 6737649754
Offset: 1

Views

Author

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
  • R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
  • R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002889 n = a002889_list !! (n-1)
    a002889_list = 1 : 10 : 56 : zipWith (+)
       (zipWith (-) (map (* 2) $ drop 2 a002889_list) a002889_list)
       (drop 2 $ zipWith (+) (tail a002941_list) a002941_list)
    -- Reinhard Zumkeller, Jan 18 2014
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)^3/((1-x)^3*(1-x-x^2)^4) )); // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    CoefficientList[(1+x)^3/((1-x)^3*(1-x-x^2)^4) + O[x]^30, x] (* Jean-François Alcover, Jul 31 2018 *)
    LinearRecurrence[{7,-17,11,19,-29,-3,21,-3,-7,1,1},{1,10,56,234,815,2504,7018,18336,45328,107160,244198},30] (* Harvey P. Dale, Jul 25 2021 *)
  • PARI
    x='x+O('x^30); Vec((1+x)^3/((1-x)^3*(1-x-x^2)^4)) \\ Altug Alkan, Jul 31 2018
    
  • Sage
    ((1+x)^3/((1-x)^3*(1-x-x^2)^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019

Formula

a(n) = 2*a(n-1) - a(n-3) + A002941(n) + A002941(n-1).
G.f.: (1+x)^3/((1-x)^3*(1-x-x^2)^4).

Extensions

More terms from Henry Bottomley, Jun 02 2000

A062123 a(n) = (9n^2 + 9n + 4)/2.

Original entry on oeis.org

2, 11, 29, 56, 92, 137, 191, 254, 326, 407, 497, 596, 704, 821, 947, 1082, 1226, 1379, 1541, 1712, 1892, 2081, 2279, 2486, 2702, 2927, 3161, 3404, 3656, 3917, 4187, 4466, 4754, 5051, 5357, 5672, 5996, 6329, 6671, 7022, 7382, 7751, 8129, 8516, 8912, 9317
Offset: 0

Views

Author

Vladeta Jovovic, Jun 04 2001

Keywords

Comments

Third column of A046741.

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).

Crossrefs

Programs

  • GAP
    List([0..50], n -> 2 +9*n*(1+n)/2); # G. C. Greubel, Jan 31 2019
  • Magma
    [2 +9*n*(1+n)/2: n in [0..50]]; // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    Table[2 +9*n*(1+n)/2, {n,0,50}] (* G. C. Greubel, Jan 31 2019 *)
    LinearRecurrence[{3,-3,1},{2,11,29},50] (* Harvey P. Dale, Jan 12 2020 *)
  • PARI
    for (n=0, 1000, write("b062123.txt", n, " ", 2 + (n + n^2)*9/2) ) \\ Harry J. Smith, Aug 02 2009
    
  • Sage
    [2 +9*n*(1+n)/2 for n in range(50)] # G. C. Greubel, Jan 31 2019
    

Formula

G.f.: (1+2*x)*(2+x)/(1-x)^3. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y)-(1+y)*x).
a(n) = 9*n + a(n-1), with n>0, a(0)=2. - Vincenzo Librandi, Aug 07 2010
E.g.f.: (4 +18*x +9*x^2)*exp(x)/2. - G. C. Greubel, Jan 31 2019

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001

A055608 Arrays of dumbbells.

Original entry on oeis.org

1, 13, 92, 473, 1982, 7191, 23431, 70234, 196941, 522939, 1327002, 3240917, 7660538, 17602967, 39466363, 86593478, 186399956, 394478234, 822229746, 1690521204, 3433033150, 6893852746, 13702694284, 26982983126, 52680389239
Offset: 1

Views

Author

Henry Bottomley, Jun 02 2000

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
  • R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
  • R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.

Crossrefs

Programs

  • Haskell
    a055608 n = a055608_list !! (n-1)
    a055608_list = 1 : 13 : 92 : zipWith (+)
       (zipWith (-) (map (* 2) $ drop 2 a055608_list) a055608_list)
       (drop 2 $ zipWith (+) (tail a002889_list) a002889_list)
    -- Reinhard Zumkeller, Jan 18 2014
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)^4/((1-x)^4*(1-x-x^2)^5) )); // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)^4/((1-x)^4*(1-x-x^2)^5), {x,0,30}], x] (* G. C. Greubel, Jan 31 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)^4/((1-x)^4*(1-x-x^2)^5)) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    ((1+x)^4/((1-x)^4*(1-x-x^2)^5)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019

Formula

G.f.: (1+x)^4/((1-x)^4*(1-x-x^2)^5).
a(n) = 2*a(n-1) - a(n-3) + A002889(n) + A002889(n-1).

A062127 Seventh column of A046741.

Original entry on oeis.org

13, 223, 1577, 7018, 23431, 64316, 153190, 327718, 644573, 1185025, 2061259, 3423422, 5467399, 8443318, 12664784, 18518842, 26476669, 37104995, 51078253, 69191458, 92373815, 121703056, 158420506, 203946878, 259898797, 328106053
Offset: 0

Views

Author

Vladeta Jovovic, Jun 04 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).

Crossrefs

Programs

  • GAP
    List([0..40], n -> (81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80); # G. C. Greubel, Jan 31 2019
  • Magma
    [(81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80: n in [0..40]]; // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    Table[(81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80, {n, 0, 40}] (* G. C. Greubel, Jan 31 2019 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{13,223,1577,7018,23431,64316,153190},30] (* Harvey P. Dale, Jun 07 2022 *)
  • PARI
    vector(40, n, n--; (81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    [(81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80 for n in range(40)] # G. C. Greubel, Jan 31 2019
    

Formula

G.f.: (2*x^6 + 14*x^5 + 72*x^4 + 207*x^3 + 289*x^2 + 132*x + 13)/(1-x)^7. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y)-(1+y)*x).
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (81*n^6 + 567*n^5 + 2205*n^4 + 4545*n^3 + 5674*n^2 + 3728*n + 1040)/80.
E.g.f.: (1040 + 16800*x + 45760*x^2 + 39240*x^3 + 13140*x^4 + 1782*x^5 + 81*x^6)*exp(x)/80. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001

A178523 The path length of the Fibonacci tree of order n.

Original entry on oeis.org

0, 0, 2, 6, 16, 36, 76, 152, 294, 554, 1024, 1864, 3352, 5968, 10538, 18478, 32208, 55852, 96420, 165800, 284110, 485330, 826752, 1404816, 2381616, 4029216, 6803666, 11468502, 19300624, 32433204, 54426364, 91216184, 152691702, 255313658, 426460288, 711634648
Offset: 0

Views

Author

Emeric Deutsch, Jun 15 2010

Keywords

Comments

A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node. The path length of a tree is the sum of the levels of all of its nodes.
This is also the number of configurations of n indistinguishable pairs placed on the vertices of the ladder graph P_2 X P_n such that all but one such pair are joined by an edge; equivalently the number of "(n-1)-domino" configurations in the game of memory played on a 2 X n rectangular array, see [Young]. - Donovan Young, Oct 23 2018

Examples

			a(2)=2 because the Fibonacci tree of order 2 is /\ with path length 1 + 1. - _Emeric Deutsch_, Sep 13 2010
		

References

  • Ralph P. Grimaldi, Properties of Fibonacci trees, In Proceedings of the Twenty-second Southeastern Conference on Combinatorics, Graph Theory, and Computing (Baton Rouge, LA, 1991); Congressus Numerantium 84 (1991), 21-32. - Emeric Deutsch, Sep 13 2010
  • D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.

Crossrefs

Programs

  • GAP
    a:=[0,2];;  for n in [3..35] do a[n]:=a[n-1]+a[n-2]+ 2*Fibonacci(n +1) -2; od; Concatenation([0],a); # Muniru A Asiru, Oct 23 2018
    
  • Magma
    [2+(2/5)*(4*n-9)*Fibonacci(n)+(2/5)*(3*n-5)*Fibonacci(n-1): n in [0..40]]; // Vincenzo Librandi, Oct 24 2018
    
  • Maple
    with(combinat): a := proc (n) options operator, arrow: 2+((8/5)*n-18/5)*fibonacci(n)+((6/5)*n-2)*fibonacci(n-1) end proc: seq(a(n), n = 0 .. 35);
    G := 2*z^2/((1-z)*(1-z-z^2)^2): Gser := series(G, z = 0, 40): seq(coeff(Gser, z, n), n = 0 .. 35);
  • Mathematica
    Table[2 +2/5 (4n-9) Fibonacci[n] +2/5 (3n -5) Fibonacci[n-1], {n, 0, 40}] (* or *) LinearRecurrence[{3, -1, -3, 1, 1}, {0, 0, 2, 6, 16}, 40] (* Harvey P. Dale, Oct 02 2016 *)
  • PARI
    vector(40, n, n--; (10+(8*n-18)*fibonacci(n)+(6*n-10)*fibonacci(n-1))/5) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    [(10+(8*n-18)*fibonacci(n)+(6*n-10)*fibonacci(n-1))/5 for n in range(40)] # G. C. Greubel, Jan 31 2019

Formula

a(n) = 2 + (2/5)*(4n-9)*F(n) + (2/5)*(3n-5)*F(n-1), where F(n) = A000045(n) (Fibonacci numbers).
a(n) = 2*A006478(n+1).
a(n) = Sum_{k=0..n-1} k*A178522(n,k).
G.f.: 2*z^2/((1-z)*(1-z-z^2)^2).
From Emeric Deutsch, Sep 13 2010: (Start)
a(0)=a(1)=0, a(n) = a(n-1)+a(n-2)+2F(n+1)-2 if n>=2; here F(j)=A000045(j) are the Fibonacci numbers (see the Grimaldi reference, Eq. (**) on p. 23).
An explicit formula for a(n) is given in the Grimaldi reference (Theorem 2).
(End)
E.g.f.: 2*exp(x) + 2*exp(x/2)*(5*(4*x - 5)*cosh(sqrt(5)*x/2) + sqrt(5)*(10*x - 13)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 04 2023

A178522 Triangle read by rows: T(n,k) is the number of nodes at level k in the Fibonacci tree of order n (n>=0, 0<=k<=n-1).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 1, 2, 4, 2, 1, 2, 4, 6, 2, 1, 2, 4, 8, 8, 2, 1, 2, 4, 8, 14, 10, 2, 1, 2, 4, 8, 16, 22, 12, 2, 1, 2, 4, 8, 16, 30, 32, 14, 2, 1, 2, 4, 8, 16, 32, 52, 44, 16, 2, 1, 2, 4, 8, 16, 32, 62, 84, 58, 18, 2, 1, 2, 4, 8, 16, 32, 64, 114, 128, 74, 20, 2, 1, 2, 4, 8, 16, 32, 64, 126
Offset: 0

Views

Author

Emeric Deutsch, Jun 15 2010

Keywords

Comments

A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node.
Sum of entries in row n is A001595(n).
Sum_{k=0..n-1} k*T(n,k) = A178523(n).

Examples

			Triangle starts:
1,
1,
1,2,
1,2,2,
1,2,4,2,
1,2,4,6,2,
1,2,4,8,8,2,
1,2,4,8,14,10,2,
1,2,4,8,16,22,12,2,
1,2,4,8,16,30,32,14,2,
...
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.

Crossrefs

Cf. A001595, A059214, A178523, A067331, A002940. See A059250 for another version.

Programs

  • Maple
    G := (1-t*z+t*z^2)/((1-z)*(1-t*z-t*z^2)): Gser := simplify(series(G, z = 0, 17)): for n from 0 to 15 do P[n] := sort(coeff(Gser, z, n)) end do: 1; for n to 13 do seq(coeff(P[n], t, k), k = 0 .. n-1) end do; # yields sequence in triangular form

Formula

G.f.: G(t,z)=(1-tz+tz^2)/[(1-z)(1-tz-tz^2)].
T(k,n) = T(k-1,n-1)+T(k-1,n) with T(0,0)=1, T(k,0)=1 for k>0, T(0,n)=2 for n>0. - Frank M Jackson, Aug 30 2011

A001925 From rook polynomials.

Original entry on oeis.org

1, 6, 22, 64, 162, 374, 809, 1668, 3316, 6408, 12108, 22468, 41081, 74202, 132666, 235160, 413790, 723530, 1258225, 2177640, 3753096, 6444336, 11028792, 18818664, 32024977, 54367374, 92094334, 155688208, 262711866, 442556798, 744355673, 1250157228
Offset: 0

Views

Author

Keywords

References

  • J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002940.

Programs

  • Maple
    A001925:=-(1+z)/(z**2+z-1)**2/(z-1)**3; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    nn = 40; CoefficientList[Series[(1 + x)/((1 - x - x^2)^2*(1 - x)^3), {x, 0, nn}], x] (* T. D. Noe, Aug 17 2012 *)
    LinearRecurrence[{5,-8,2,6,-4,-1,1},{1,6,22,64,162,374,809},40] (* Harvey P. Dale, Oct 15 2021 *)

Formula

Riordan gives the g.f. (1+x)/[(1-x-x^2)^2*(1-x)^3].
Showing 1-10 of 16 results. Next