cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A062127 Seventh column of A046741.

Original entry on oeis.org

13, 223, 1577, 7018, 23431, 64316, 153190, 327718, 644573, 1185025, 2061259, 3423422, 5467399, 8443318, 12664784, 18518842, 26476669, 37104995, 51078253, 69191458, 92373815, 121703056, 158420506, 203946878, 259898797, 328106053
Offset: 0

Views

Author

Vladeta Jovovic, Jun 04 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).

Crossrefs

Programs

  • GAP
    List([0..40], n -> (81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80); # G. C. Greubel, Jan 31 2019
  • Magma
    [(81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80: n in [0..40]]; // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    Table[(81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80, {n, 0, 40}] (* G. C. Greubel, Jan 31 2019 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{13,223,1577,7018,23431,64316,153190},30] (* Harvey P. Dale, Jun 07 2022 *)
  • PARI
    vector(40, n, n--; (81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    [(81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80 for n in range(40)] # G. C. Greubel, Jan 31 2019
    

Formula

G.f.: (2*x^6 + 14*x^5 + 72*x^4 + 207*x^3 + 289*x^2 + 132*x + 13)/(1-x)^7. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y)-(1+y)*x).
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (81*n^6 + 567*n^5 + 2205*n^4 + 4545*n^3 + 5674*n^2 + 3728*n + 1040)/80.
E.g.f.: (1040 + 16800*x + 45760*x^2 + 39240*x^3 + 13140*x^4 + 1782*x^5 + 81*x^6)*exp(x)/80. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001

A062124 Fourth column of A046741.

Original entry on oeis.org

3, 26, 94, 234, 473, 838, 1356, 2054, 2959, 4098, 5498, 7186, 9189, 11534, 14248, 17358, 20891, 24874, 29334, 34298, 39793, 45846, 52484, 59734, 67623, 76178, 85426, 95394, 106109, 117598, 129888, 143006, 156979, 171834, 187598, 204298
Offset: 0

Views

Author

Vladeta Jovovic, Jun 04 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).

Crossrefs

Programs

  • GAP
    List([0..40], n -> (6+19*n+18*n^2+9*n^3)/2); # G. C. Greubel, Jan 31 2019
  • Magma
    [(6+19*n+18*n^2+9*n^3)/2: n in [0..40]]; // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    Table[(6+19*n+18*n^2+9*n^3)/2, {n,0,40}] (* G. C. Greubel, Jan 31 2019 *)
    LinearRecurrence[{4,-6,4,-1},{3,26,94,234},40] (* Harvey P. Dale, Feb 20 2022 *)
  • PARI
    vector(40, n, n--; (6+19*n+18*n^2+9*n^3)/2) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    [(6+19*n+18*n^2+9*n^3)/2 for n in range(40)] # G. C. Greubel, Jan 31 2019
    

Formula

G.f.: (3 + 14*x + 8*x^2 + 2*x^3)/(1-x)^4. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y) - (1+y)*x).
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (6 + 19*n + 18*n^2 + 9*n^3)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (6 + 46*x + 45*x^2 + 9*x^3)*exp(x)/2. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001

A062125 Fifth column of A046741.

Original entry on oeis.org

5, 56, 263, 815, 1982, 4115, 7646, 13088, 21035, 32162, 47225, 67061, 92588, 124805, 164792, 213710, 272801, 343388, 426875, 524747, 638570, 769991, 920738, 1092620, 1287527, 1507430, 1754381, 2030513, 2338040, 2679257, 3056540
Offset: 0

Views

Author

Vladeta Jovovic, Jun 04 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).

Crossrefs

Programs

  • GAP
    List([0..40], n -> (40+126*n+165*n^2+90*n^3+27*n^4)/8); # G. C. Greubel, Jan 31 2019
  • Magma
    [(40+126*n+165*n^2+90*n^3+27*n^4)/8: n in [0..40]]; // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {5, 56, 263, 815, 1982}, 31] (* or *) CoefficientList[Series[(5+33x^2+10x^3+31x+2x^4)/(1-x)^5,{x,0,30}],x] (* Harvey P. Dale, Dec 21 2011 *)
    Table[(40+126*n+165*n^2+90*n^3+27*n^4)/8, {n,0,40}] (* G. C. Greubel, Jan 31 2019 *)
  • PARI
    vector(40, n, n--; (40+126*n+165*n^2+90*n^3+27*n^4)/8) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    [(40+126*n+165*n^2+90*n^3+27*n^4)/8 for n in range(40)] # G. C. Greubel, Jan 31 2019
    

Formula

G.f.: (5 + 33*x^2 + 10*x^3 + 31*x + 2*x^4)/(1-x)^5. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y)-(1+y)*x).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), where a(0)=5, a(1)=56, a(2)=263, a(3)=815, a(4)=1982. - Harvey P. Dale, Dec 21 2011
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (40 + 126*n + 165*n^2 + 90*n^3 + 27*n^4)/8.
E.g.f.: (40 + 408*x + 624*x^2 + 252*x^3 + 27*x^4)*exp(x)/8. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001

A062126 Sixth column of A046741.

Original entry on oeis.org

8, 114, 667, 2504, 7191, 17266, 36482, 70050, 124882, 209834, 335949, 516700, 768233, 1109610, 1563052, 2154182, 2912268, 3870466, 5066063, 6540720, 8340715, 10517186, 13126374, 16229866, 19894838, 24194298, 29207329
Offset: 0

Views

Author

Vladeta Jovovic, Jun 04 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).

Crossrefs

Programs

  • GAP
    List([0..40], n -> (320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5 )/40); # G. C. Greubel, Jan 31 2019
  • Magma
    [(320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5)/40: n in [0..40]]; // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    Table[(320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5)/40, {n, 0, 40}] (* G. C. Greubel, Jan 31 2019 *)
  • PARI
    vector(40, n, n--; (320+1114*n+1515*n^2+1125*n^3+405*n^4 + 81*n^5)/40) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    [(320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5)/40 for n in range(40)] # G. C. Greubel, Jan 31 2019
    

Formula

G.f.: (x+2)*(2*x^4 + 8*x^3 + 36*x^2 + 31*x + 4)/(1-x)^6. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1 - y - y^2)*(1-y) - (1+y)*x).
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (320 + 1114*n + 1515*n^2 + 1125*n^3 + 405*n^4 + 81*n^5)/40.
E.g.f.: (320 + 4240*x + 8940*x^2 + 5580*x^3 + 1215*x^4 + 81*x^5)*exp(x)/40. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001

A039962 Duplicate of A046741.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 7, 11, 3, 1, 10, 29, 26, 5, 1, 13, 56, 94, 56, 8, 1, 16, 92, 234, 263, 114
Offset: 0

Views

Author

Keywords

A030186 a(n) = 3*a(n-1) + a(n-2) - a(n-3) for n >= 3, a(0)=1, a(1)=2, a(2)=7.

Original entry on oeis.org

1, 2, 7, 22, 71, 228, 733, 2356, 7573, 24342, 78243, 251498, 808395, 2598440, 8352217, 26846696, 86293865, 277376074, 891575391, 2865808382, 9211624463, 29609106380, 95173135221, 305916887580, 983314691581, 3160687827102, 10159461285307, 32655756991442
Offset: 0

Views

Author

Ottavio D'Antona (dantona(AT)dsi.unimi.it)

Keywords

Comments

Number of matchings in ladder graph L_n = P_2 X P_n.
Cycle-path coverings of a family of digraphs.
a(n+1) = Fibonacci(n+1)^2 + Sum_{k=0..n} Fibonacci(k)^2*a(n-k) (with the offset convention Fibonacci(2)=2). - Barry Cipra, Jun 11 2003
Equivalently, ways of paving a 2 X n grid cells using only singletons and dominoes. - Lekraj Beedassy, Mar 25 2005
It is easy to see that the g.f. for indecomposable tilings (pavings) i.e. those that cannot be split vertically into smaller tilings, is g=2x+3x^2+2x^3+2x^4+2x^5+...=x(2+x-x^2)/(1-x); then G.f.=1/(1-g)=(1-x)/(1-3x-x^2+x^3). - Emeric Deutsch, Oct 16 2006
Row sums of A046741. - Emeric Deutsch, Oct 16 2006
Equals binomial transform of A156096. - Gary W. Adamson, Feb 03 2009
a(n) = Lucas(2n) + Sum_{k=2..n-1} Fibonacci(2k-1)*a(n-k). This relationship can be proven by a visual proof using the idea of tiling a 2 X n board with only singletons and dominoes while conditioning on where the vertical dominoes first appear. If there are no vertical dominoes positioned at lengths 2 through n-1, there will be Lucas(2n) ways to tile the board since a complete tour around the board will be made possible. If the first vertical domino appears at length k (where 2 <= k <= n-1) there will be Fibonacci(2k-1)*a(n-k) ways to tile the board. - Rana Ürek, Jun 25 2018

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 25.
  • J. D. E. Konhauser et al., Which Way Did The Bicycle Go? Problem 140 "Count The Tilings" pp. 42; 180-1 Dolciani Math. Exp. No. 18 MAA Washington DC 1996.

Crossrefs

Partial sums give A033505.
Column 2 of triangle A210662.
Cf. A156096. - Gary W. Adamson, Feb 03 2009
Bisection (even part) gives A260033.

Programs

  • GAP
    a:=[1,2,7];; for n in [4..30] do a[n]:=3*a[n-1]+a[n-2]-a[n-3]; od; a; # G. C. Greubel, Sep 27 2019
  • Haskell
    a030186 n = a030186_list !! n
    a030186_list = 1 : 2 : 7 : zipWith (-) (tail $
       zipWith (+) a030186_list $ tail $ map (* 3) a030186_list) a030186_list
    -- Reinhard Zumkeller, Oct 20 2011
    
  • Maple
    a[0]:=1: a[1]:=2: a[2]:=7: for n from 3 to 30 do a[n]:=3*a[n-1]+a[n-2]-a[n-3] od: seq(a[n],n=0..30); # Emeric Deutsch, Oct 16 2006
    # second Maple program:
    a:= n-> (<<0|1|0>, <0|0|1>, <-1|1|3>>^(n+1))[3,2]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 07 2024
  • Mathematica
    LinearRecurrence[{3,1,-1}, {1,2,7}, 26] (* Robert G. Wilson v, Nov 20 2012 *)
    Table[RootSum[1 -# -3#^2 +#^3 &, 9#^n -10#^(n+1) +7#^(n+2) &]/74, {n, 0, 30}] (* Eric W. Weisstein, Oct 03 2017 *)
    CoefficientList[Series[(1-x)/(1-3x-x^2+x^3), {x,0,30}], x] (* Eric W. Weisstein, Oct 03 2017 *)
  • PARI
    {a(n)=if(n==0,1,if(n==1,2,(sum(k=0, n-1, a(k))^2+sum(k=0, n-1, a(k)^2))/a(n-1)))} \\ Paul D. Hanna, Nov 20 2012
    
  • Sage
    def A030186_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-x)/(1-3*x-x^2+x^3)).list()
    A030186_list(30) # G. C. Greubel, Sep 27 2019
    

Formula

G.f.: (1-x)/(1-3*x-x^2+x^3).
a(n) = ( (Sum_{k=0..n-1} a(k))^2 + (Sum_{k=0..n-1} a(k)^2) ) / a(n-1) for n>1 with a(0)=1, a(1)=2 (similar to A088016). - Paul D. Hanna, Nov 20 2012

Extensions

More terms from James Sellers
Entry revised by N. J. A. Sloane, Feb 13 2002

A002940 Arrays of dumbbells.

Original entry on oeis.org

1, 4, 11, 26, 56, 114, 223, 424, 789, 1444, 2608, 4660, 8253, 14508, 25343, 44030, 76136, 131110, 224955, 384720, 656041, 1115784, 1893216, 3205416, 5416441, 9136084, 15384563, 25866914, 43429784, 72821274, 121953943, 204002680, 340886973, 569047468, 949022608
Offset: 1

Views

Author

Keywords

Comments

Whitney transform of n. The Whitney transform maps the sequence with g.f. g(x) to that with g.f. (1/(1-x))g(x(1+x)). - Paul Barry, Feb 16 2005
a(n-1) is the permanent of the n X n 0-1 matrix with 1 in (i,j) position iff (i=1 and j1). For example, with n=5, a(4) = per([[1, 1, 1, 1, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [0, 1, 1, 1, 1], [0, 0, 1, 1, 1]]) = 26. - David Callan, Jun 07 2006
a(n) is the internal path length of the Fibonacci tree of order n+2. A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node. The internal path length of a tree is the sum of the levels of all of its internal (i.e. non-leaf) nodes. - Emeric Deutsch, Jun 15 2010
Partial Sums of A023610 - John Molokach, Jul 03 2013

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.

Crossrefs

Programs

  • Haskell
    a002940 n = a002940_list !! (n-1)
    a002940_list = 1 : 4 : 11 : zipWith (+)
       (zipWith (-) (map (* 2) $ drop 2 a002940_list) a002940_list)
       (drop 5 a000045_list)
    -- Reinhard Zumkeller, Jan 18 2014
    
  • Magma
    m:=35; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)/((1-x)*(1-x-x^2)^2) )); // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    a[n_]:= a[n]= If[n<3, n^2, 2a[n-1] -a[n-3] +Fibonacci[n+1]]; Array[a, 32] (* Jean-François Alcover, Jul 31 2018 *)
  • PARI
    my(x='x+O('x^35)); Vec((1+x)/((1-x)*(1-x-x^2)^2)) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    ((1+x)/((1-x)*(1-x-x^2)^2)).series(x, 35).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019

Formula

a(n) = 2*a(n-1) - a(n-3) + A000045(n+1).
G.f.: x*(1+x)/((1-x)*(1-x-x^2)^2).
a(n) = Sum_{k=0..n} ( Sum_{i=0..n} k*C(k, i-k) ). - Paul Barry, Feb 16 2005
E.g.f.: 2*exp(x) + exp(x/2)*((55*x - 50)*cosh(sqrt(5)*x/2) + sqrt(5)*(25*x - 22)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 03 2023

Extensions

More terms from Henry Bottomley, Jun 02 2000

A002941 Arrays of dumbbells.

Original entry on oeis.org

1, 7, 29, 94, 263, 667, 1577, 3538, 7622, 15900, 32314, 64274, 125561, 241569, 458715, 861242, 1601081, 2950693, 5396209, 9801012, 17692092, 31759800, 56727588, 100861716, 178585489, 314995915, 553650761, 969967510, 1694235803
Offset: 1

Views

Author

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
  • R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
  • R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002941 n = a002941_list !! (n-1)
    a002941_list = 1 : 7 : 29 : zipWith (+)
       (zipWith (-) (map (* 2) $ drop 2 a002941_list) a002941_list)
       (drop 2 $ zipWith (+) (tail a002940_list) a002940_list)
    -- Reinhard Zumkeller, Jan 18 2014
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)^2/((1-x-x^2)^3*(1-x)^2) )); // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    CoefficientList[(1+x)^2/((1-x-x^2)^3*(1-x)^2) + O[x]^30, x] (* Jean-François Alcover, Jul 31 2018 *)
    LinearRecurrence[{5,-7,-2,10,-2,-5,1,1},{1,7,29,94,263,667,1577,3538},30] (* Harvey P. Dale, Aug 29 2021 *)
  • PARI
    x='x+O('x^30); Vec((1+x)^2/((1-x-x^2)^3*(1-x)^2)) \\ Altug Alkan, Jul 31 2018
    
  • Sage
    ((1+x)^2/((1-x-x^2)^3*(1-x)^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019

Formula

G.f.: (1+x)^2/((1-x-x^2)^3*(1-x)^2).
a(n) = 2*a(n-1) - a(n-3) + A002940(n) + A002940(n-1).

Extensions

More terms from Henry Bottomley, Jun 02 2000

A002889 Arrays of dumbbells.

Original entry on oeis.org

1, 10, 56, 234, 815, 2504, 7018, 18336, 45328, 107160, 244198, 539656, 1161987, 2446906, 5054440, 10266850, 20549117, 40595568, 79271188, 153190480, 293278496, 556737696, 1048772300, 1961855408, 3646420325, 6737649754
Offset: 1

Views

Author

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
  • R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
  • R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002889 n = a002889_list !! (n-1)
    a002889_list = 1 : 10 : 56 : zipWith (+)
       (zipWith (-) (map (* 2) $ drop 2 a002889_list) a002889_list)
       (drop 2 $ zipWith (+) (tail a002941_list) a002941_list)
    -- Reinhard Zumkeller, Jan 18 2014
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)^3/((1-x)^3*(1-x-x^2)^4) )); // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    CoefficientList[(1+x)^3/((1-x)^3*(1-x-x^2)^4) + O[x]^30, x] (* Jean-François Alcover, Jul 31 2018 *)
    LinearRecurrence[{7,-17,11,19,-29,-3,21,-3,-7,1,1},{1,10,56,234,815,2504,7018,18336,45328,107160,244198},30] (* Harvey P. Dale, Jul 25 2021 *)
  • PARI
    x='x+O('x^30); Vec((1+x)^3/((1-x)^3*(1-x-x^2)^4)) \\ Altug Alkan, Jul 31 2018
    
  • Sage
    ((1+x)^3/((1-x)^3*(1-x-x^2)^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019

Formula

a(n) = 2*a(n-1) - a(n-3) + A002941(n) + A002941(n-1).
G.f.: (1+x)^3/((1-x)^3*(1-x-x^2)^4).

Extensions

More terms from Henry Bottomley, Jun 02 2000

A242861 Triangle T(n,k) by rows: number of ways k dominoes can be placed on an n X n chessboard, k>=0.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 12, 44, 56, 18, 1, 24, 224, 1044, 2593, 3388, 2150, 552, 36, 1, 40, 686, 6632, 39979, 157000, 407620, 695848, 762180, 510752, 192672, 35104, 2180, 1, 60, 1622, 26172, 281514, 2135356, 11785382, 48145820, 146702793, 333518324, 562203148
Offset: 0

Views

Author

Ralf Stephan, May 24 2014

Keywords

Comments

Also, coefficients of the matching-generating polynomial of the n X n grid graph.
In the n-th row there are floor(n^2/2)+1 values.

Examples

			Triangle starts:
  1
  1
  1  4   2
  1 12  44   56    18
  1 24 224 1044  2593   3388   2150    552     36
  1 40 686 6632 39979 157000 407620 695848 762180 510752 192672 35104 2180
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, l) option remember; local k;
          if n=0 then 1
        elif min(l[])>0 then b(n-1, map(h->h-1, l))
        else for k while l[k]>0 do od; expand(`if`(n>1,
             x*b(n, subsop(k=2, l)), 0) +`if`(k (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$n])):
    seq(T(n), n=0..8); # Alois P. Heinz, Jun 01 2014
  • Mathematica
    b[n_, l_List] := b[n, l] =  Module[{k}, Which[n == 0, 1, Min[l]>0, b[n-1, l-1], True, For[k=1, l[[k]]>0, k++]; Expand[If[n>1, x*b[n, ReplacePart[l, k -> 2]], 0] + If[k 1, k + 1 -> 1}]], 0] + b[n, ReplacePart[l, k -> 1]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, Array[0&, n]]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jun 16 2015, after Alois P. Heinz *)
  • Sage
    def T(n,k):
       G = Graph(graphs.Grid2dGraph(n,n))
       G.relabel()
       mu = G.matching_polynomial()
       return abs(mu[n^2-2*k])

Formula

T(n,1) = A046092(n-1), T(n,2) = A242856(n).
T(n,floor(n^2/2)) = A137308(n), T(2n,2n^2) = A004003(n).
sum(k>=0, T(n,k)) = A210662(n,n) = A028420(n).
T(n,3) = A243206(n), T(n,4) = A243215(n), T(n,5) = A243217(n), T(n,floor(n^2/4)) = A243221(n). - Alois P. Heinz, Jun 01 2014
Showing 1-10 of 24 results. Next