cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A028420 Number of monomer-dimer tilings of n X n chessboard.

Original entry on oeis.org

1, 1, 7, 131, 10012, 2810694, 2989126727, 11945257052321, 179788343101980135, 10185111919160666118608, 2172138783673094193937750015, 1743829823240164494694386437970640, 5270137993816086266962874395450234534887, 59956919824257750508655631107474672284499736089
Offset: 0

Views

Author

Jennifer Henry, Shalosh B. Ekhad, and Steven Finch

Keywords

Comments

Also the total number of matchings (not necessarily perfect ones; i.e., Hosoya index) in the n X n grid. - Andre Poenitz (poenitz(AT)htwm.de), Nov 20 2003

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 406-412.

Crossrefs

Cf. A004003. A diagonal of A210662.
Row sums of A242861.

Programs

  • Maple
    b:= proc(n, l) option remember; local k;
          if n=0 then 1
        elif min(l)>0 then (t-> b(n-t, map(h->h-t, l)))(min(l))
        else for k while l[k]>0 do od; `if`(k b(n, [0$n]):
    seq(a(n), n=0..13);  # Alois P. Heinz, Dec 04 2020
  • Mathematica
    Table[With[{g = GridGraph[{n, n}]}, Count[Subsets[EdgeList[g], Length @ Flatten @ FindIndependentEdgeSet[g]], ?(IndependentEdgeSetQ[g, #] &)]], {n, 4}] (* _Eric W. Weisstein, May 28 2017 *)
    b[n_, l_] := b[n, l] = Module[{k}, Which[
         n == 0, 1,
         Min[l] > 0, Function[t, b[n-t, Map[#-t&, l]]][Min[l]],
         True, For[k = 1, l[[k]] > 0, k++]; If[k < Length[l] &&
              l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 1}]], 0] +
              Sum[If[n j]]], {j, 1, 2}]]];
    a[n_] := b[n, Table[0, {n}]];
    Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Dec 30 2021, after Alois P. Heinz *)

Extensions

Broken links corrected by Steven Finch, Jan 27 2009
a(0)=1 prepended by Alois P. Heinz, Dec 04 2020

A243424 Triangle T(n,k) read by rows of number of ways k domicules can be placed on an n X n square (n >= 0, 0 <= k <= floor(n^2/2)).

Original entry on oeis.org

1, 1, 1, 6, 3, 1, 20, 110, 180, 58, 1, 42, 657, 4890, 18343, 33792, 27380, 7416, 280, 1, 72, 2172, 36028, 362643, 2307376, 9382388, 24121696, 37965171, 34431880, 16172160, 3219364, 170985, 1, 110, 5375, 154434, 2911226, 38049764, 355340561, 2408715568
Offset: 0

Views

Author

Alois P. Heinz, Jun 04 2014

Keywords

Comments

A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other.
The n-th row gives the coefficients of the matching-generating polynomial of the n X n king graph. - Eric W. Weisstein, Jun 20 2017

Examples

			T(2,1) = 6:
  +---+  +---+  +---+  +---+  +---+  +---+
  |o-o|  |   |  |o  |  |  o|  |o  |  |  o|
  |   |  |   |  ||  |  |  ||  | \ |  | / |
  |   |  |o-o|  |o  |  |  o|  |  o|  |o  |
  +---+  +---+  +---+  +---+  +---+  +---+
T(2,2) = 3:
  +---+  +---+  +---+
  |o-o|  |o o|  |o o|
  |   |  || ||  | X |
  |o-o|  |o o|  |o o|
  +---+  +---+  +---+
Triangle T(n,k) begins:
  1;
  1;
  1,  6,    3;
  1, 20,  110,   180,     58;
  1, 42,  657,  4890,  18343,   33792,   27380,     7416,      280;
  1, 72, 2172, 36028, 362643, 2307376, 9382388, 24121696, 37965171, ...
  ...
		

Crossrefs

Columns k=0-5 give: A000012, A002943(n-1) for n>0, A243464, A243465, A243466, A243467.
Row sums give A220638.
T(n,floor(n^2/2)) gives A243510.
T(n,floor(n^2/4)) gives A243511.
Cf. A242861 (the same for dominoes), A239264.

Programs

  • Maple
    b:= proc(n, l) option remember; local d, f, k;
          d:= nops(l)/2; f:=false;
          if n=0 then 1
        elif l[1..d]=[f$d] then b(n-1, [l[d+1..2*d][], true$d])
        else for k to d while not l[k] do od;
             expand(b(n, subsop(k=f, l))+
             `if`(k1 and l[k+d+1],
                                x*b(n, subsop(k=f, k+d+1=f, l)), 0)+
             `if`(k>1 and n>1 and l[k+d-1],
                                x*b(n, subsop(k=f, k+d-1=f, l)), 0)+
             `if`(n>1 and l[k+d], x*b(n, subsop(k=f, k+d=f, l)), 0)+
             `if`(k (p-> seq(coeff(p,x,i), i=0..degree(p)))(b(n, [true$(n*2)])):
    seq(T(n), n=0..7);
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{d, f, k}, d = Length[l]/2; f = False; Which[ n == 0, 1, l[[1 ;; d]] == Table[f, d], b[n-1, Join[l[[d+1 ;; 2d]], Table[ True, d]]], True, For[k = 1, !l[[k]], k++]; Expand[b[n, ReplacePart[l, k -> f]] + If[k1 && l[[k+d+1]], x*b[n, ReplacePart[l, {k -> f, k + d + 1 -> f}]], 0] + If[k>1 && n>1 && l[[k + d - 1]], x*b[n, ReplacePart[ l, {k -> f, k + d - 1 -> f}]], 0] + If[n>1 && l[[k + d]], x*b[n, ReplacePart[l, {k -> f, k+d -> f}]], 0] + If[k f, k+1 -> f}]], 0]]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][
      b[n, Table[True, 2n]]];
    Table[T[n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Jun 09 2018, after Alois P. Heinz *)

A242856 Number of 2-matchings of the n X n grid graph.

Original entry on oeis.org

2, 44, 224, 686, 1622, 3272, 5924, 9914, 15626, 23492, 33992, 47654, 65054, 86816, 113612, 146162, 185234, 231644, 286256, 349982, 423782, 508664, 605684, 715946, 840602, 980852, 1137944, 1313174, 1507886, 1723472, 1961372, 2223074, 2510114, 2824076, 3166592
Offset: 2

Views

Author

Ralf Stephan, May 24 2014

Keywords

Comments

Number of ways two dominoes can be placed on an n X n chessboard.

Crossrefs

Second column of A242861. Cf. A016742, A046092, A054000, A210662.

Programs

  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {2, 44, 224, 686, 1622}, 50] (* Paolo Xausa, May 20 2024 *)
  • PARI
    Vec(-2*x^2*(x^4-7*x^3+12*x^2+17*x+1)/(x-1)^5 + O(x^100)) \\ Colin Barker, Jun 26 2014
  • Sage
    def a(n):
        G = Graph(graphs.Grid2dGraph(n,n))
        G.relabel()
        return G.matching_polynomial()[n^2-4]
    

Formula

a(n) = 2*n^4 - 4*n^3 - 5*n^2 + 13*n - 4.
G.f.: -2*x^2*(x^4-7*x^3+12*x^2+17*x+1) / (x-1)^5. - Colin Barker, Jun 26 2014
a(n + 1) = (1/2)*A046092(n)*(A046092(n) - 1) - A016742(n) - A054000(n). - Nicolas Bělohoubek, May 15 2024
E.g.f.: 4 - 2*x + exp(x)*(2*x^4 + 8*x^3 - 3*x^2 + 6*x - 4). - Stefano Spezia, Jun 04 2024

Extensions

a(7)-a(36) from Alois P. Heinz, Jun 01 2014

A287595 Number of maximal matchings in the n X n grid graph.

Original entry on oeis.org

1, 1, 2, 22, 400, 22228, 3136370, 1158560776, 1147204164108, 2980178704765860, 20513821200001569410, 373243563814532182524614, 17941038966060235808302667164
Offset: 0

Views

Author

Eric W. Weisstein, May 27 2017

Keywords

Crossrefs

Main diagonal of A288026.

Programs

  • Mathematica
    Join[{1}, Table[Length@FindIndependentVertexSet[LineGraph@GridGraph[{n, n}], Infinity, All], {n, 2, 6}]] (* Eric W. Weisstein, Jul 13 2024 *)

Extensions

a(7)-a(10) from Andrey Zabolotskiy, May 31 2017
a(1) changed and a(0) prepended by Alois P. Heinz, May 31 2017
a(11)-a(12) from Andrew Howroyd, Jun 04 2017

A137308 Number of dimer coverings on n X n square if n is even; number of dimer arrangements with exactly one monomer if n is odd.

Original entry on oeis.org

1, 1, 2, 18, 36, 2180, 6728, 2200776, 12988816, 20355006224, 258584046368, 1801272981919008, 53060477521960000, 1560858753560238398528, 112202208776036178000000, 13428038397958481723104394368
Offset: 0

Views

Author

Steven Finch, Apr 03 2008

Keywords

Comments

Subsequence of even-subscripted terms is A004003.
Rightmost diagonal of A242861.
Also the number of maximum matchings in the n X n grid graph. - Eric W. Weisstein, May 28 2017

References

  • Y. Kong, Packing dimers on (2p+1) X (2q+1) lattices, Phys. Rev. E 73 (2006) 016106

Crossrefs

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 15 2021

A243206 Number of 3-matchings of the n X n grid graph.

Original entry on oeis.org

0, 0, 0, 56, 1044, 6632, 26172, 78536, 196916, 434584, 871612, 1622552, 2845076, 4749576, 7609724, 11773992, 17678132, 25858616, 36967036, 51785464, 71242772, 96431912, 128628156, 169308296, 220170804, 283156952, 360472892, 454612696, 568382356, 704924744
Offset: 0

Views

Author

Alois P. Heinz, Jun 01 2014

Keywords

Comments

Number of ways 3 dominoes can be placed on an n X n chessboard.

Crossrefs

Column k=3 of A242861.

Programs

  • Maple
    a:= n-> `if`(n<3, 0, ((((((4*n-12)*n-30)*n+116)*n+14)*n-272)*n+156)/3):
    seq(a(n), n=0..40);

Formula

G.f.: 4*x^3*(-14-163*x-125*x^2-5*x^5-6*x^4+72*x^3+x^6)/(x-1)^7.
a(n) = (4*n^6-12*n^5-30*n^4+116*n^3+14*n^2-272*n+156)/3 for n>=3, a(n) = 0 for n<3.

A243215 Number of 4-matchings of the n X n grid graph.

Original entry on oeis.org

0, 0, 0, 18, 2593, 39979, 281514, 1301950, 4618099, 13628193, 35115244, 81502564, 174076485, 347418199, 655313518, 1178436234, 2034127639, 3388621645, 5472091824, 8596923568, 13179641449, 19766948739, 29066362930, 41981957974, 59655750843, 83515296889
Offset: 0

Views

Author

Alois P. Heinz, Jun 01 2014

Keywords

Comments

Number of ways 4 dominoes can be placed on an n X n chessboard.

Crossrefs

Column k=4 of A242861.

Programs

  • Maple
    a:= n-> `if`(n<4, [0$3, 18][n+1], ((((((((4*n-16)*n-60)
           *n+308)*n+171)*n-1942)*n+872)*n+3963)*n-3366)/6):
    seq(a(n), n=0..40);

Formula

G.f.: -(6*x^9 -14*x^8 -155*x^7 +474*x^6 +1267*x^5 -7976*x^4 +13539*x^3 +17290*x^2 +2431*x +18)*x^3 / (x-1)^9.
a(n) = (4*n^8 -16*n^7 -60*n^6 +308*n^5 +171*n^4 -1942*n^3 +872*n^2 +3963*n -3366)/6 for n>=4, a(3) = 18, a(n) = 0 for n<=2.

A243217 Number of 5-matchings of the n X n grid graph.

Original entry on oeis.org

0, 0, 0, 0, 3388, 157000, 2135356, 15836664, 81324796, 325679904, 1088989348, 3174085648, 8301786980, 19888285976, 44304931948, 92833927816, 184597383660, 350812701616, 640815379476, 1130391980512, 1933082192404, 3215240556392, 5215796556572, 8271817286296
Offset: 0

Views

Author

Alois P. Heinz, Jun 01 2014

Keywords

Comments

Number of ways 5 dominoes can be placed on an n X n chessboard.

Crossrefs

Column k=5 of A242861.

Programs

  • Maple
    a:= n-> `if`(n<5, [0$4, 3388][n+1], ((((((((((4*n-20)*n-100)*n+640)
        *n+635)*n-7589)*n+2370)*n+39275)*n-35789)*n-74246)*n+86580)/15):
    seq(a(n), n=0..40);

Formula

G.f.: 4*(2*x^11 -6*x^10 +17*x^9 -559*x^8 +3298*x^7 -5840*x^6 -8668*x^5 +55222*x^4 -105932*x^3 -148674*x^2 -29933*x -847)*x^4 / (x-1)^11.
a(n) = (4*n^10 -20*n^9 -100*n^8 +640*n^7 +635*n^6 -7589*n^5 +2370*n^4 +39275*n^3 -35789*n^2 -74246*n +86580)/15 for n>=5, a(4) = 3388, a(n) = 0 for n<=3.

A243221 Number of quarter-square matchings of the n X n grid graph.

Original entry on oeis.org

1, 1, 4, 44, 2593, 407620, 333518324, 696849783788, 7561681603209033, 204785162442300693673, 28874426647917459828127044, 10023323177854055068860282476760, 18172145684566998309243670369029131178, 80387219406473992671391703779030095453926416
Offset: 0

Views

Author

Alois P. Heinz, Jun 01 2014

Keywords

Comments

Number of ways floor(n^2/4) dominoes can be placed on an n X n chessboard. a(n) is the central term in the n-th row of A242861.

Crossrefs

Formula

a(n) = A242861(n,floor(n^2/4)) = A242861(n,A002620(n)).

A242983 n/2 * (n^3 - 2*n^2 - 2*n + 5).

Original entry on oeis.org

0, 1, 1, 12, 58, 175, 411, 826, 1492, 2493, 3925, 5896, 8526, 11947, 16303, 21750, 28456, 36601, 46377, 57988, 71650, 87591, 106051, 127282, 151548, 179125, 210301, 245376, 284662, 328483, 377175, 431086, 490576, 556017
Offset: 0

Views

Author

Ralf Stephan, Jun 09 2014

Keywords

Comments

For n>1, number of ways to place two dominoes horizontally on an n X n chessboard.

Crossrefs

Programs

  • Mathematica
    Table[n/2 (n^3-2n^2-2n+5),{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,1,12,58},40] (* Harvey P. Dale, Jul 19 2018 *)

Formula

a(n) = A019582(n) + A077414(n-2), n>1.
G.f.: x*(-2*x^3 + 17*x^2 - 4*x + 1) / (1-x)^5.
Showing 1-10 of 10 results.