cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Shalosh B. Ekhad

Shalosh B. Ekhad's wiki page.

Shalosh B. Ekhad has authored 2 sequences.

A182523 Rademacher's sequence C_{011}(N) times (2n)!, where C_{011}(N) is the coefficient of 1/(q-1) in the partial fraction decomposition of 1/((1-q)(1-q^2)...(1-q^N)).

Original entry on oeis.org

-2, -6, -170, -9520, -874902, -118950678, -22370367448, -5550123527520
Offset: 1

Author

Shalosh B. Ekhad, May 03 2012

Keywords

Comments

Hans Rademacher conjectured that C_{011}(N) converge to -0.292927573960. This conjecture is false.
Named after the German-American mathematician Hans Adolph Rademacher (1892-1969). - Amiram Eldar, Jun 22 2021

Examples

			For n=1, the coefficient of 1/(q-1) in the partial fraction decomposition of 1/(1-q) is -1, multiplied by 2! this gives -2.
		

References

  • Hans Rademacher, Topics in Analytic Number Theory, Springer, 1973, p. 302.

Programs

  • Maple
    See above link to HANS (maple package).

Formula

See above article for an efficient recurrence.

A028420 Number of monomer-dimer tilings of n X n chessboard.

Original entry on oeis.org

1, 1, 7, 131, 10012, 2810694, 2989126727, 11945257052321, 179788343101980135, 10185111919160666118608, 2172138783673094193937750015, 1743829823240164494694386437970640, 5270137993816086266962874395450234534887, 59956919824257750508655631107474672284499736089
Offset: 0

Author

Jennifer Henry, Shalosh B. Ekhad, and Steven Finch

Keywords

Comments

Also the total number of matchings (not necessarily perfect ones; i.e., Hosoya index) in the n X n grid. - Andre Poenitz (poenitz(AT)htwm.de), Nov 20 2003

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 406-412.

Crossrefs

Cf. A004003. A diagonal of A210662.
Row sums of A242861.

Programs

  • Maple
    b:= proc(n, l) option remember; local k;
          if n=0 then 1
        elif min(l)>0 then (t-> b(n-t, map(h->h-t, l)))(min(l))
        else for k while l[k]>0 do od; `if`(k b(n, [0$n]):
    seq(a(n), n=0..13);  # Alois P. Heinz, Dec 04 2020
  • Mathematica
    Table[With[{g = GridGraph[{n, n}]}, Count[Subsets[EdgeList[g], Length @ Flatten @ FindIndependentEdgeSet[g]], ?(IndependentEdgeSetQ[g, #] &)]], {n, 4}] (* _Eric W. Weisstein, May 28 2017 *)
    b[n_, l_] := b[n, l] = Module[{k}, Which[
         n == 0, 1,
         Min[l] > 0, Function[t, b[n-t, Map[#-t&, l]]][Min[l]],
         True, For[k = 1, l[[k]] > 0, k++]; If[k < Length[l] &&
              l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 1}]], 0] +
              Sum[If[n j]]], {j, 1, 2}]]];
    a[n_] := b[n, Table[0, {n}]];
    Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Dec 30 2021, after Alois P. Heinz *)

Extensions

Broken links corrected by Steven Finch, Jan 27 2009
a(0)=1 prepended by Alois P. Heinz, Dec 04 2020