cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A004003 Number of domino tilings (or dimer coverings) of a 2n X 2n square.

Original entry on oeis.org

1, 2, 36, 6728, 12988816, 258584046368, 53060477521960000, 112202208776036178000000, 2444888770250892795802079170816, 548943583215388338077567813208427340288, 1269984011256235834242602753102293934298576249856
Offset: 0

Views

Author

Keywords

Comments

A099390 is the main entry for domino tilings (or dimer tilings) of a rectangle.
The numbers of domino tilings in A006253, A004003, A006125 give the number of perfect matchings in the relevant graphs. There are results of Jockusch and Ciucu that if a planar graph has a rotational symmetry then the number of perfect matchings is a square or twice a square - this applies to these 3 sequences. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 12 2001
Christine Bessenrodt points out that Pachter (1997) shows that a(n) is divisible by 2^n (cf. A065072).
a(n) is the number of different ways to cover a 2n X 2n lattice with 2n^2 dominoes. John and Sachs show that a(n) = 2^n*B(n)^2, where B(n) == n+1 (mod 32) when n is even and B(n) == (-1)^((n-1)/2)*n (mod 32) when n is odd. - Yong Kong (ykong(AT)curagen.com), May 07 2000

Examples

			The 36 solutions for the 4 X 4 board, from Neven Juric, May 14 2008:
A01 = {(1,2), (3,4), (5,6), (7,8), (9,10), (11,12), (13,14), (15,16)}
A02 = {(1,2), (3,4), (5,6), (7,11), (9,10), (8,12), (13,14), (15,16)}
A03 = {(1,2), (3,4), (5,9), (6,7), (10,11), (8,12), (13,14), (15,16)}
A04 = {(1,2), (3,4), (5,9), (6,10), (7,8), (11,12), (13,14), (15,16)}
A05 = {(1,2), (3,4), (5,9), (6,10), (7,11), (8,12), (13,14), (15,16)}
A06 = {(1,2), (3,4), (5,6), (7,8), (9,10), (13,14), (11,15), (12,16)}
A07 = {(1,2), (3,4), (5,9), (6,10), (7,8), (11,15), (13,14), (12,16)}
A08 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,14), (11,12), (15,16)}
A09 = {(1,2), (3,4), (5,6), (7,11), (8,12), (9,13), (10,14), (15,16)}
A10 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,11), (14,15), (12,16)}
A11 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,14), (11,15), (12,16)}
A12 = {(1,2), (5,6), (3,7), (4,8), (9,10), (11,12), (13,14), (15,16)}
A13 = {(1,2), (3,7), (4,8), (5,9), (6,10), (11,12), (13,14), (15,16)}
A14 = {(1,2), (5,6), (3,7), (4,8), (9,10), (13,14), (11,15), (12,16)}
A15 = {(1,2), (3,7), (4,8), (6,10), (5,9), (11,15), (12,16), (13,14)}
A16 = {(1,2), (3,7), (4,8), (5,6), (9,13), (10,14), (11,12), (15,16)}
A17 = {(1,2), (3,7), (4,8), (5,6), (9,13), (10,11), (14,15), (12,16)}
A18 = {(1,2), (5,6), (3,7), (4,8), (9,13), (10,14), (11,15), (12,16)}
A19 = {(1,5), (2,6), (3,4), (7,8), (9,10), (11,12), (13,14), (15,16)}
A20 = {(1,5), (2,6), (3,4), (7,11), (8,12), (9,10), (13,14), (15,16)}
A21 = {(1,5), (3,4), (2,6), (9,10), (7,8), (11,15), (13,14), (12,16)}
A22 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,14), (11,12), (15,16)}
A23 = {(1,5), (2,6), (3,4), (7,11), (8,12), (9,13), (10,14), (15,16)}
A24 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,11), (14,15), (12,16)}
A25 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,14), (11,15), (12,16)}
A26 = {(1,5), (2,3), (6,7), (4,8), (9,10), (11,12), (13,14), (15,16)}
A27 = {(1,5), (2,6), (3,7), (4,8), (9,10), (11,12), (13,14), (15,16)}
A28 = {(1,5), (2,3), (6,7), (4,8), (9,10), (11,15), (13,14), (12,16)}
A29 = {(1,5), (2,6), (3,7), (4,8), (9,10), (13,14), (11,15), (12,16)}
A30 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,14), (11,12), (15,16)}
A31 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,14), (11,12), (15,16)}
A32 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,14), (11,15), (12,16)}
A33 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,11), (14,15), (12,16)}
A34 = {(1,5), (2,3), (4,8), (6,10), (7,11), (9,13), (14,15), (12,16)}
A35 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,14), (11,15), (12,16)}
A36 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,11), (14,15), (12,16)}
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 569.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 406-412.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Darko Veljan, Kombinatorika s teorijom grafova (Croatian) (Combinatorics with Graph Theory) mentions the value 12988816 = 2^4*901^2 for the 8 X 8 case on page 4.

Crossrefs

Main diagonal of array A099390 or A187596.

Programs

  • Maple
    f := n->2^(2*n^2)*product(product(cos(i*Pi/(2*n+1))^2+cos(j*Pi/(2*n+1))^2,j=1..n),i=1..n); for k from 0 to 12 do round(evalf(f(k),300)) od;
  • Mathematica
    a[n_] := Round[ N[ Product[ 2*Cos[(2i*Pi)/(2n+1)] + 2*Cos[(2j*Pi)/(2n+1)] + 4,  {i, 1, n}, {j, 1, n}], 300] ]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jan 04 2012, after Maple *)
    Table[Sqrt[Resultant[ChebyshevU[2*n, x/2], ChebyshevU[2*n, I*x/2], x]], {n, 0, 12}] (* Vaclav Kotesovec, Dec 30 2020 *)
  • PARI
    {a(n) = sqrtint(polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(2*n, 2, I*x/2)))} \\ Seiichi Manyama, Apr 13 2020
    
  • Python
    from math import isqrt
    from sympy.abc import x
    from sympy import I, resultant, chebyshevu
    def A004003(n): return isqrt(resultant(chebyshevu(n<<1,x/2),chebyshevu(n<<1,I*x/2))) if n else 1 # Chai Wah Wu, Nov 07 2023

Formula

a(n) = A099390(2n,2n).
a(n) = Product_{j=1..n} Product_{k=1..n} (4*cos(j*Pi/(2*n+1))^2 + 4*cos(k*Pi/(2*n+1))^2). - N. J. A. Sloane, Mar 16 2015
a(n) = 2^n * A065072(n)^2. - Alois P. Heinz, Nov 22 2018
a(n)^2 = Resultant(U(2*n,x/2), U(2*n,i*x/2)), where U(n,x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - Seiichi Manyama, Apr 13 2020
a(n) ~ 2 * (sqrt(2)-1)^(2*n+1) * exp(G*(2*n+1)^2/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Dec 30 2020

Extensions

Corrected and extended by David Radcliffe

A210662 Triangle read by rows: T(n,k) (1 <= k <= n) = number of monomer-dimer tilings of an n X k board.

Original entry on oeis.org

1, 2, 7, 3, 22, 131, 5, 71, 823, 10012, 8, 228, 5096, 120465, 2810694, 13, 733, 31687, 1453535, 65805403, 2989126727, 21, 2356, 196785, 17525619, 1539222016, 135658637925, 11945257052321, 34, 7573, 1222550, 211351945, 36012826776, 6158217253688, 1052091957273408, 179788343101980135
Offset: 1

Views

Author

N. J. A. Sloane, Mar 28 2012

Keywords

Comments

The triangle is half of a symmetric square array, since T(n,k) = T(k,n).
Equivalently, ways of paving n X k grid cells using only singletons and dominoes. Also, the number of tilings of an n X k chessboard with the two polyominoes (0,0) and (0,0)+(0,1).
Also, matchings of the n X k grid graph. The n X k grid graph is also denoted P_m X P_n. For k=2, this is called the ladder graph L_n.
In statistical mechanics, this is a special case of the Monomer-Dimer Problem, which deals with monomer-dimer coverings of a finite patch of a lattice.
Right hand diagonal is A028420. Left hand diagonal is A000045.
Taken as a full square array, columns (and rows) 1-7 respectively match A000045(n+1), A030186, A033506(n-1), A033507(n-1), A033508(n-1), A033509(n-1), A033510(n-1), and have recurrences of order 2 3 6 9 20 36 72. - R. H. Hardin, Dec 11 2012

Examples

			Triangle begins:
1
2 7
3 22 131
5 71 823 10012
8 228 5096 120465 2810694
13 733 31687 1453535 65805403 2989126727
21 2356 196785 17525619 1539222016 135658637925 11945257052321
34 7573 1222550 211351945 36012826776 6158217253688 1052091957273408 179788343101980135...
The 7 matchings of the P(2) X P(2)-graph are:
  . .   .-.   . .   . .   . .   . .   .-.
              |       |         | |
  . .   . .   . .   . .   .-.   . .   .-.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 406-412.
  • Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University.

Programs

  • Sage
    from sage.combinat.tiling import TilingSolver, Polyomino
    def T(n, k):
        p = Polyomino([(0, 0)])
        q = Polyomino([(0, 0), (0, 1)])
        T = TilingSolver([p, q], box=[n, k], reusable=True)
        return T.number_of_solutions()
    # Ralf Stephan, May 22 2014

Formula

T(1,n) = A000045(n+1), T(2,n) = A030186(n), T(3,n) = A033506(n), T(4,n) = A033507(n), T(5,n) = A033508(n), T(6,n) = A033509(n), T(7,n) = A033510(n), T(8,n) = A033511(n), T(9,n) = A033512(n), T(10,n) = A033513(n), T(11,n) = A033514(n), T(n,n) = A028420(n).

Extensions

Typo in term 27 corrected by Alois P. Heinz, Dec 03 2012
Reviewed by Ralf Stephan, May 22 2014

A287428 Array read by antidiagonals: T(m,n) is the number of matchings in the stacked prism graph C_m X P_n.

Original entry on oeis.org

1, 2, 3, 3, 12, 4, 5, 47, 32, 7, 8, 185, 228, 108, 11, 13, 728, 1655, 1511, 342, 18, 21, 2865, 11978, 21497, 9213, 1104, 29, 34, 11275, 86731, 305184, 253880, 57536, 3544, 47, 55, 44372, 627960, 4334009, 6974078, 3079253, 356863, 11396, 76
Offset: 1

Views

Author

Andrew Howroyd, May 25 2017

Keywords

Comments

Row 1 is the number of matchings in P_n and row 2 is the number of matchings in G X P_n where G is a double edge. These choices give the best fit with the column linear recurrences.

Examples

			Table starts:
======================================================================
m\n|  1    2      3        4          5            6              7
---|------------------------------------------------------------------
1  |  1    2      3        5          8           13             21 ...
2  |  3   12     47      185        728         2865          11275 ...
3  |  4   32    228     1655      11978        86731         627960 ...
4  |  7  108   1511    21497     305184      4334009       61545775 ...
5  | 11  342   9213   253880    6974078    191668283     5267252351 ...
6  | 18 1104  57536  3079253  164206124   8761336545   467431319920 ...
7  | 29 3544 356863 37071837 3834744194 396924243197 41080815923665 ...
...
		

Crossrefs

Columns 2..3 are A102080, A102090.
Cf. A028420 (P_m X P_n), A270246 (C_m X C_n), A270227 (K_m X K_n).

A242861 Triangle T(n,k) by rows: number of ways k dominoes can be placed on an n X n chessboard, k>=0.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 12, 44, 56, 18, 1, 24, 224, 1044, 2593, 3388, 2150, 552, 36, 1, 40, 686, 6632, 39979, 157000, 407620, 695848, 762180, 510752, 192672, 35104, 2180, 1, 60, 1622, 26172, 281514, 2135356, 11785382, 48145820, 146702793, 333518324, 562203148
Offset: 0

Views

Author

Ralf Stephan, May 24 2014

Keywords

Comments

Also, coefficients of the matching-generating polynomial of the n X n grid graph.
In the n-th row there are floor(n^2/2)+1 values.

Examples

			Triangle starts:
  1
  1
  1  4   2
  1 12  44   56    18
  1 24 224 1044  2593   3388   2150    552     36
  1 40 686 6632 39979 157000 407620 695848 762180 510752 192672 35104 2180
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, l) option remember; local k;
          if n=0 then 1
        elif min(l[])>0 then b(n-1, map(h->h-1, l))
        else for k while l[k]>0 do od; expand(`if`(n>1,
             x*b(n, subsop(k=2, l)), 0) +`if`(k (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$n])):
    seq(T(n), n=0..8); # Alois P. Heinz, Jun 01 2014
  • Mathematica
    b[n_, l_List] := b[n, l] =  Module[{k}, Which[n == 0, 1, Min[l]>0, b[n-1, l-1], True, For[k=1, l[[k]]>0, k++]; Expand[If[n>1, x*b[n, ReplacePart[l, k -> 2]], 0] + If[k 1, k + 1 -> 1}]], 0] + b[n, ReplacePart[l, k -> 1]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, Array[0&, n]]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jun 16 2015, after Alois P. Heinz *)
  • Sage
    def T(n,k):
       G = Graph(graphs.Grid2dGraph(n,n))
       G.relabel()
       mu = G.matching_polynomial()
       return abs(mu[n^2-2*k])

Formula

T(n,1) = A046092(n-1), T(n,2) = A242856(n).
T(n,floor(n^2/2)) = A137308(n), T(2n,2n^2) = A004003(n).
sum(k>=0, T(n,k)) = A210662(n,n) = A028420(n).
T(n,3) = A243206(n), T(n,4) = A243215(n), T(n,5) = A243217(n), T(n,floor(n^2/4)) = A243221(n). - Alois P. Heinz, Jun 01 2014

A270228 Number of matchings in the n X n rook graph K_n X K_n.

Original entry on oeis.org

1, 7, 370, 270529, 3337807996, 855404716021831, 5352265402523357926168, 940288991338542314571521981185, 5236753179470435264288904589157765055760, 1029720447530443779943631183186535523331685533812231
Offset: 1

Views

Author

Andrew Howroyd, Mar 13 2016

Keywords

Comments

K_n X K_n is also called the rook graph or lattice graph.

Crossrefs

Cf. A270227, A270229, A085537 (Wiener index), A002720 (independent vertex sets), A269561, A028420.

A269869 Number of matchings (not necessarily perfect) in the triangle graph of order n.

Original entry on oeis.org

1, 4, 27, 425, 14278, 1054396, 169858667, 59811185171, 46012925161519, 77344464552678876, 284066030784415134855, 2279568155737623235728996, 39969481180418160836567285156, 1531253921482570179838977438893104, 128176575381689893022287259560629125869
Offset: 1

Views

Author

Andrew Howroyd, Mar 06 2016

Keywords

Comments

The triangle graph of order n has n rows with i vertices in row i. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has A000217(n) vertices and 3*A000217(n-1) edges altogether.

References

  • Samuel Dittmer, Hiram Golze, Grant Molnar, and Caleb Stanford, Puzzle and Proof: A Decade of Problems from the Utah Math Olympiad, CRC Press, 2025, p. 59.

Crossrefs

A353777 Number of tilings of an n X n square using dominoes, monominoes and 2 X 2 tiles.

Original entry on oeis.org

1, 1, 8, 163, 15623, 5684228, 8459468955, 50280716999785, 1202536689448371122, 115462301811597894998929, 44537596159273736617786474211, 69003082378039459280864860681919942, 429429579883061866326542598342441907826951, 10734684843612889640707750537898705644071715970757
Offset: 0

Views

Author

Alois P. Heinz, May 07 2022

Keywords

Examples

			a(2) = 8:
  .___.  .___.  .___.  .___.  .___.  .___.  .___.  .___.
  |   |  |_|_|  |___|  | | |  |_|_|  |___|  |_| |  | |_|
  |___|  |_|_|  |___|  |_|_|  |___|  |_|_|  |_|_|  |_|_| .
		

Crossrefs

Formula

a(n) = A352589(n,n).

A270247 Number of matchings in the n X n torus grid graph C_n X C_n.

Original entry on oeis.org

1, 7, 370, 41025, 15637256, 23079663560, 127193770624285, 2645142169931308801, 206932904585998805434690, 60953421285412135689567940992, 67583556205239600880061198746186383, 282092296203355454009618109524478429807744
Offset: 1

Views

Author

Andrew Howroyd, Mar 13 2016

Keywords

Comments

C_{n} X C_{n} is also known as the (n,n)-torus grid graph.

Crossrefs

A332714 The number of placements of zero or more dominoes on the n X n grid where the number of vertical dominoes differs from the number of horizontal dominoes by at most 1.

Original entry on oeis.org

1, 5, 75, 4632, 1076492, 963182263, 3317770165381, 43809083383524391, 2209112327971366587064, 424273291301040427702718109, 309707064465485300360403957730000, 857932019835933358500355409793382735115, 9007779604382069542348587670082074125962102375
Offset: 1

Views

Author

Neil A. McKay, Feb 20 2020

Keywords

Comments

The number of play positions of n X n Domineering. Domineering is a game in which players take turns placing dominoes on a grid, one player placing vertically and the other horizontally until the player to place cannot place a domino.

Crossrefs

Cf. A028420 (the number of placements of dominoes on an n X n grid).

Programs

  • Sage
    # See Bjorn Huntemann, Svenja Huntemann, Neil A. McKay link.

Extensions

a(11)-a(13) from Andrew Howroyd, Feb 20 2020

A335560 Number of ways to tile an n X n square with 1 X 1 squares and (n-1) X 1 vertical or horizontal strips.

Original entry on oeis.org

1, 16, 131, 335, 851, 2207, 5891, 16175, 45491, 130367, 378851, 1112015, 3286931, 9762527, 29091011, 86879855, 259853171, 777986687, 2330814371, 6986151695, 20945872211, 62812450847, 188387020931, 565060399535, 1694979872051, 5084536963007, 15252805582691
Offset: 1

Views

Author

Oluwatobi Jemima Alabi, Jun 14 2020

Keywords

Comments

It is assumed that 1 X 1 squares and 1 X 1 strips can be distinguished. - Alois P. Heinz, Feb 23 2022

Examples

			Here is one of the 131 ways to tile a 3 X 3 square, in this case using two horizontal and two vertical strips:
   _ _ _
  |_ _| |
  | |_|_|
  |_|_ _|
		

Crossrefs

Cf. A063443 and A211348 (tiling an n X n square with smaller squares).
Cf. A028420 (tiling an n X n square with monomers and dimers).

Programs

  • Mathematica
    Join[{1, 16}, LinearRecurrence[{6, -11, 6}, {131, 335, 851}, 25]] (* Amiram Eldar, Jun 16 2020 *)
  • PARI
    Vec(x*(1 + 10*x + 46*x^2 - 281*x^3 + 186*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, Jun 14 2020

Formula

a(n) = 2*3^n + 12*2^n - 19, for n >= 3.
From Colin Barker, Jun 14 2020: (Start)
G.f.: x*(1 + 10*x + 46*x^2 - 281*x^3 + 186*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>5. (End)
E.g.f.: 5 - 19*exp(x) +12 *exp(2*x) + 2*exp(3*x) - 10*x - 31*x^2/2. - Stefano Spezia, Aug 25 2025
Showing 1-10 of 12 results. Next