A266513
Number of undirected cycles in a triangular grid graph, n vertices on each side.
Original entry on oeis.org
0, 1, 11, 110, 2402, 128967, 16767653, 5436906668, 4406952731948, 8819634719356421, 43329348004927734247, 522235268182347360718818, 15436131339319739257518081878, 1117847654274955574635482276231683, 198163274851163063009517020867737770265
Offset: 1
Of the 11 cycles in the triangular grid with 3 vertices per side, 4 have length 3, 3 have length 4, 3 have length 5 and 1 has length 6.
4 basic cycle shapes on a(3):
o
/ \
o o---o o---o o o
/ \ / / / \ / \
o---o o---o o---o---o o---o---o
-
# Using graphillion
from graphillion import GraphSet
def make_n_triangular_grid_graph(n):
s = 1
grids = []
for i in range(n + 1, 1, -1):
for j in range(i - 1):
a, b, c = s + j, s + j + 1, s + i + j
grids.extend([(a, b), (a, c), (b, c)])
s += i
return grids
def A266513(n):
if n == 1: return 0
universe = make_n_triangular_grid_graph(n - 1)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles()
return cycles.len()
print([A266513(n) for n in range(1, 12)]) # Seiichi Manyama, Nov 30 2020
A288852
Number T(n,k) of matchings of size k in the n X n X n triangular grid; triangle T(n,k), n>=0, 0<=k<=floor(n*(n+1)/4), read by rows.
Original entry on oeis.org
1, 1, 1, 3, 1, 9, 15, 2, 1, 18, 99, 193, 108, 6, 1, 30, 333, 1734, 4416, 5193, 2331, 240, 1, 45, 825, 8027, 45261, 151707, 298357, 327237, 180234, 40464, 2238, 1, 63, 1710, 26335, 255123, 1629474, 6995539, 20211423, 38743020, 47768064, 35913207, 15071019
Offset: 0
Triangle T(n,k) begins:
1;
1;
1, 3;
1, 9, 15, 2;
1, 18, 99, 193, 108, 6;
1, 30, 333, 1734, 4416, 5193, 2331, 240;
1, 45, 825, 8027, 45261, 151707, 298357, 327237, 180234, 40464, 2238;
Last elements of rows give
A271610.
-
b:= proc(l) option remember; local n, k; n:= nops(l);
if n=0 then 1
elif min(l)>0 then b(subsop(-1=NULL, map(h-> h-1, l)))
else for k to n while l[k]>0 do od; b(subsop(k=1, l))+
expand(x*(`if`(k1 and l[k-1]=1, b(subsop(k=1, k-1=2, l)), 0)))
fi
end:
T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(b([0$n])):
seq(T(n), n=0..10);
-
b[l_] := b[l] = Module[{n = Length[l], k}, Which[n == 0, 1, Min[l] > 0, b[ReplacePart[l - 1, -1 -> Nothing]], True, For[k = 1, k <= n && l[[k]] > 0, k++]; b[ReplacePart[l, k -> 1]] + x*Expand[If[k < n, b[ReplacePart[l, k -> 2]], 0] + If[k < n && l[[k + 1]] == 0, b[ReplacePart[l, {k -> 1, k + 1 -> 1}]], 0] + If[k > 1 && l[[k - 1]] == 1, b[ReplacePart[l, {k -> 1, k - 1 -> 2}]], 0]]]];
T[n_] := Table[Coefficient[#, x, i], {i, 0, Exponent[#, x]}]&[b[Table[0, n] ]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, May 24 2018, translated from Maple *)
A039907
Number of perfect matchings in triangle graph with n nodes per side.
Original entry on oeis.org
1, 0, 0, 2, 6, 0, 0, 2196, 37004, 0, 0, 2317631400, 216893681800, 0, 0, 2326335506123418128, 1208982377794384163088, 0, 0, 2220650888749669503773432361504, 6408743336016148761893699822360672, 0, 0, 2015895925780490675949731718780144934779733312
Offset: 0
- J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 17).
-
with(LinearAlgebra): a:= proc(n) option remember; local l, ll, i, j, h0, h1, M; if n=0 then return 1 fi; if n<0 or member(irem(n, 4), [1, 2]) then return 0 fi; l:= []; for j from 1 to n-1 do h0:= j*(j-1)/2+1; h1:= j*(j+1)/2+1; for i from 1 to j do l:= [l[], [h1, h1+1]]; if irem(i, 2)=1 then l:= [l[], [h1, h0]]; h1:= h1+1; l:=[l[], [h1, h0]]; h0:=h0+1 else l:= [l[], [h0, h1]]; h1:= h1+1; l:=[l[], [h0, h1]]; h0:=h0+1 fi od od; M:= Matrix((n+1)*n/2); for ll in l do M[ll[1], ll[2]]:= 1; M[ll[2], ll[1]]:= -1 od: isqrt(Determinant(M)) end: seq(a(n), n=0..20); # Alois P. Heinz, May 08 2010
-
a[n_] := a[n] = Module[{l, ll, i, j, h0, h1, M}, If[n == 0 , Return[1]]; If[n < 0 || MemberQ[{1, 2}, Mod[n, 4]], Return[0]]; l = {}; For[j = 1, j <= n-1, j++, h0 = j*(j-1)/2+1; h1 = j*(j+1)/2+1; For[i = 1, i <= j, i++, l = Join[l, {h1, h1+1}]; If[Mod [i, 2] == 1, l = Join[l, {h1, h0}]; h1 = h1+1; l = Join[l, {h1, h0}]; h0 = h0+1, l = Join[l, {h0, h1}]; h1 = h1+1; l = Join[l, {h0, h1}]; h0 = h0+1]]]; M[, ] = 0; Do[M[ll[[1]], ll[[2]]] = 1; M[ll[[2]], ll[[1]]] = -1, {ll, Partition[l, 2]}]; Sqrt[Det[Array[M, {n*(n+1)/2, n*(n+1)/2}]]]]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Apr 17 2014, after Alois P. Heinz *)
A287230
Number of matchings in the n-triangular honeycomb acute knight graph.
Original entry on oeis.org
1, 1, 8, 64, 1331, 64000, 6400075, 1404928000, 677298787768, 712186032947200, 1635557819719974912, 8209592592625295700893, 90036881979773511965369428, 2157454308508779392217680572439, 112955975573487831948842897960075264, 12921763288870998051759383983484279183072, 3229803978189426975602886931834056243712000000
Offset: 1
A071093
Number of perfect matchings in triangle graph with n nodes per side as n runs through numbers congruent to 0 or 3 mod 4.
Original entry on oeis.org
1, 2, 6, 2196, 37004, 2317631400, 216893681800, 2326335506123418128, 1208982377794384163088, 2220650888749669503773432361504, 6408743336016148761893699822360672, 2015895925780490675949731718780144934779733312, 32307672245407537492814937397129549558917000333504
Offset: 0
- James Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 17).
- Alois P. Heinz, Table of n, a(n) for n = 0..44
- James Propp, Twenty open problems in enumeration of matchings, arXiv:math/9801061 [math.CO], 1998-1999.
- James Propp, Updated article
- James Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
- James Propp, Some 2-Adic Conjectures Concerning Polyomino Tilings of Aztec Diamonds, Integers (2023) Vol. 23, Art. A30.
-
with(LinearAlgebra): b:= proc(n) option remember; local l, ll, i, j, h0, h1, M; if n=0 then return 1 fi; if n<0 or member(irem(n, 4), [1, 2]) then return 0 fi; l:= []; for j from 1 to n-1 do h0:= j*(j-1)/2+1; h1:= j*(j+1)/2+1; for i from 1 to j do l:= [l[], [h1, h1+1]]; if irem(i, 2)=1 then l:= [l[], [h1, h0]]; h1:= h1+1; l:=[l[], [h1, h0]]; h0:=h0+1 else l:= [l[], [h0, h1]]; h1:= h1+1; l:=[l[], [h0, h1]]; h0:=h0+1 fi od od; M:= Matrix((n+1)*n/2); for ll in l do M[ll[1], ll[2]]:= 1; M[ll[2], ll[1]]:= -1 od: isqrt(Determinant(M)); end: a:= n-> b(2*n +irem(n, 2)): seq(a(n), n=0..10); # Alois P. Heinz, May 08 2010
-
b[n_] := b[n] = Module[{l, ll, i, j, h0, h1, M}, If[n == 0 , Return[1]]; If[n<0 || MatchQ[Mod[n, 4], 1|2] , Return[0]]; l = {}; For[j = 1, j <= n-1, j++, h0 = j*(j-1)/2+1; h1 = j*(j+1)/2+1; For[i = 1, i <= j, i++, AppendTo[l, {h1, h1+1}]; If[Mod[i, 2] == 1, AppendTo[l, {h1, h0}]; h1++; AppendTo[l, {h1, h0}]; h0++ , AppendTo[l, {h0, h1}]; h1++; AppendTo[l, {h0, h1}]; h0++ ]]]; M[, ] = 0; (M[#[[1]], #[[2]]] = 1; M[#[[2]], #[[1]]] = -1)& /@ l; Sqrt[Det[Array[M, {n*(n+1)/2, n*(n+1)/2}]]]]; a[n_] := b[2*n + Mod[n, 2]]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 29 2014, after Alois P. Heinz *)
A297061
Number of edge covers in the n X n triangular grid graph.
Original entry on oeis.org
0, 4, 198, 84682, 281721996, 7392711987818, 1528658402287559670, 2490983667363798650708788, 31987702603596066902310936860946, 3237032742135065575663156511653859260726, 2581445727611992619431296420645395411748335733438
Offset: 0
A297485
Number of maximal matchings in the n-triangular grid graph.
Original entry on oeis.org
1, 3, 11, 86, 1318, 36149, 1905037, 185934481, 34000082535, 11612664144891, 7414832091145015
Offset: 0
Showing 1-7 of 7 results.
Comments