cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A030186 a(n) = 3*a(n-1) + a(n-2) - a(n-3) for n >= 3, a(0)=1, a(1)=2, a(2)=7.

Original entry on oeis.org

1, 2, 7, 22, 71, 228, 733, 2356, 7573, 24342, 78243, 251498, 808395, 2598440, 8352217, 26846696, 86293865, 277376074, 891575391, 2865808382, 9211624463, 29609106380, 95173135221, 305916887580, 983314691581, 3160687827102, 10159461285307, 32655756991442
Offset: 0

Views

Author

Ottavio D'Antona (dantona(AT)dsi.unimi.it)

Keywords

Comments

Number of matchings in ladder graph L_n = P_2 X P_n.
Cycle-path coverings of a family of digraphs.
a(n+1) = Fibonacci(n+1)^2 + Sum_{k=0..n} Fibonacci(k)^2*a(n-k) (with the offset convention Fibonacci(2)=2). - Barry Cipra, Jun 11 2003
Equivalently, ways of paving a 2 X n grid cells using only singletons and dominoes. - Lekraj Beedassy, Mar 25 2005
It is easy to see that the g.f. for indecomposable tilings (pavings) i.e. those that cannot be split vertically into smaller tilings, is g=2x+3x^2+2x^3+2x^4+2x^5+...=x(2+x-x^2)/(1-x); then G.f.=1/(1-g)=(1-x)/(1-3x-x^2+x^3). - Emeric Deutsch, Oct 16 2006
Row sums of A046741. - Emeric Deutsch, Oct 16 2006
Equals binomial transform of A156096. - Gary W. Adamson, Feb 03 2009
a(n) = Lucas(2n) + Sum_{k=2..n-1} Fibonacci(2k-1)*a(n-k). This relationship can be proven by a visual proof using the idea of tiling a 2 X n board with only singletons and dominoes while conditioning on where the vertical dominoes first appear. If there are no vertical dominoes positioned at lengths 2 through n-1, there will be Lucas(2n) ways to tile the board since a complete tour around the board will be made possible. If the first vertical domino appears at length k (where 2 <= k <= n-1) there will be Fibonacci(2k-1)*a(n-k) ways to tile the board. - Rana Ürek, Jun 25 2018

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 25.
  • J. D. E. Konhauser et al., Which Way Did The Bicycle Go? Problem 140 "Count The Tilings" pp. 42; 180-1 Dolciani Math. Exp. No. 18 MAA Washington DC 1996.

Crossrefs

Partial sums give A033505.
Column 2 of triangle A210662.
Cf. A156096. - Gary W. Adamson, Feb 03 2009
Bisection (even part) gives A260033.

Programs

  • GAP
    a:=[1,2,7];; for n in [4..30] do a[n]:=3*a[n-1]+a[n-2]-a[n-3]; od; a; # G. C. Greubel, Sep 27 2019
  • Haskell
    a030186 n = a030186_list !! n
    a030186_list = 1 : 2 : 7 : zipWith (-) (tail $
       zipWith (+) a030186_list $ tail $ map (* 3) a030186_list) a030186_list
    -- Reinhard Zumkeller, Oct 20 2011
    
  • Maple
    a[0]:=1: a[1]:=2: a[2]:=7: for n from 3 to 30 do a[n]:=3*a[n-1]+a[n-2]-a[n-3] od: seq(a[n],n=0..30); # Emeric Deutsch, Oct 16 2006
    # second Maple program:
    a:= n-> (<<0|1|0>, <0|0|1>, <-1|1|3>>^(n+1))[3,2]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 07 2024
  • Mathematica
    LinearRecurrence[{3,1,-1}, {1,2,7}, 26] (* Robert G. Wilson v, Nov 20 2012 *)
    Table[RootSum[1 -# -3#^2 +#^3 &, 9#^n -10#^(n+1) +7#^(n+2) &]/74, {n, 0, 30}] (* Eric W. Weisstein, Oct 03 2017 *)
    CoefficientList[Series[(1-x)/(1-3x-x^2+x^3), {x,0,30}], x] (* Eric W. Weisstein, Oct 03 2017 *)
  • PARI
    {a(n)=if(n==0,1,if(n==1,2,(sum(k=0, n-1, a(k))^2+sum(k=0, n-1, a(k)^2))/a(n-1)))} \\ Paul D. Hanna, Nov 20 2012
    
  • Sage
    def A030186_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-x)/(1-3*x-x^2+x^3)).list()
    A030186_list(30) # G. C. Greubel, Sep 27 2019
    

Formula

G.f.: (1-x)/(1-3*x-x^2+x^3).
a(n) = ( (Sum_{k=0..n-1} a(k))^2 + (Sum_{k=0..n-1} a(k)^2) ) / a(n-1) for n>1 with a(0)=1, a(1)=2 (similar to A088016). - Paul D. Hanna, Nov 20 2012

Extensions

More terms from James Sellers
Entry revised by N. J. A. Sloane, Feb 13 2002

A218354 T(n,k) = Hilltop maps: number of nXk binary arrays indicating the locations of corresponding elements not exceeded by any horizontal or vertical neighbor in a random 0..1 n X k array.

Original entry on oeis.org

1, 3, 3, 5, 11, 5, 9, 41, 41, 9, 17, 149, 291, 149, 17, 31, 547, 2069, 2069, 547, 31, 57, 2007, 14811, 28661, 14811, 2007, 57, 105, 7361, 105913, 401253, 401253, 105913, 7361, 105, 193, 27001, 757305, 5609569, 10982565, 5609569, 757305, 27001, 193, 355
Offset: 1

Views

Author

R. H. Hardin, Oct 26 2012

Keywords

Comments

From Andrew Howroyd, May 10 2017: (Start)
Number of n X k binary matrices with every 1 vertically or horizontally adjacent to some 0.
Number of dominating sets in the grid graph P_n X P_k. (End)

Examples

			Table starts
....1.......3...........5..............9.................17
....3......11..........41............149................547
....5......41.........291...........2069..............14811
....9.....149........2069..........28661.............401253
...17.....547.......14811.........401253...........10982565
...31....2007......105913........5609569..........300126903
...57....7361......757305.......78394141.........8199377227
..105...27001.....5415209.....1095695529.......224032447213
..193...99043....38722037....15314367301......6121258910011
..355..363299...276885777...214044940145....167250519310183
..653.1332617..1979899795..2991651891557...4569773233045519
.1201.4888173.14157473937.41813576818545.124859601874166153
...
Some solutions for n=3 k=4
..1..0..1..1....1..1..1..0....1..1..1..0....1..0..1..1....1..0..1..1
..1..0..1..0....1..0..1..0....0..0..1..0....1..0..1..1....1..1..0..1
..0..0..1..0....1..1..0..1....0..1..1..1....1..1..1..1....1..1..1..0
		

Crossrefs

Columns 1-7 are A000213(n+1), A218348, A218349, A218350, A218351, A218352, A218353.
Diagonal is A133515.
Cf. A089934 (independent vertex sets), A210662 (matchings).

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +a(n-3).
k=2: a(n) = 3*a(n-1) +2*a(n-2) +2*a(n-3) -a(n-4) -a(n-5).
k=3: a(n) = 6*a(n-1) +5*a(n-2) +22*a(n-3) +7*a(n-4) +8*a(n-5) -18*a(n-6) -20*a(n-7) -a(n-8) +4*a(n-9) +3*a(n-10) +a(n-12).
Column k=1 for an underlying 0..z array: a(n) = sum(i=1..2z+1){a(n-i)} z=1,2,3,4

A028420 Number of monomer-dimer tilings of n X n chessboard.

Original entry on oeis.org

1, 1, 7, 131, 10012, 2810694, 2989126727, 11945257052321, 179788343101980135, 10185111919160666118608, 2172138783673094193937750015, 1743829823240164494694386437970640, 5270137993816086266962874395450234534887, 59956919824257750508655631107474672284499736089
Offset: 0

Views

Author

Jennifer Henry, Shalosh B. Ekhad, and Steven Finch

Keywords

Comments

Also the total number of matchings (not necessarily perfect ones; i.e., Hosoya index) in the n X n grid. - Andre Poenitz (poenitz(AT)htwm.de), Nov 20 2003

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 406-412.

Crossrefs

Cf. A004003. A diagonal of A210662.
Row sums of A242861.

Programs

  • Maple
    b:= proc(n, l) option remember; local k;
          if n=0 then 1
        elif min(l)>0 then (t-> b(n-t, map(h->h-t, l)))(min(l))
        else for k while l[k]>0 do od; `if`(k b(n, [0$n]):
    seq(a(n), n=0..13);  # Alois P. Heinz, Dec 04 2020
  • Mathematica
    Table[With[{g = GridGraph[{n, n}]}, Count[Subsets[EdgeList[g], Length @ Flatten @ FindIndependentEdgeSet[g]], ?(IndependentEdgeSetQ[g, #] &)]], {n, 4}] (* _Eric W. Weisstein, May 28 2017 *)
    b[n_, l_] := b[n, l] = Module[{k}, Which[
         n == 0, 1,
         Min[l] > 0, Function[t, b[n-t, Map[#-t&, l]]][Min[l]],
         True, For[k = 1, l[[k]] > 0, k++]; If[k < Length[l] &&
              l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 1}]], 0] +
              Sum[If[n j]]], {j, 1, 2}]]];
    a[n_] := b[n, Table[0, {n}]];
    Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Dec 30 2021, after Alois P. Heinz *)

Extensions

Broken links corrected by Steven Finch, Jan 27 2009
a(0)=1 prepended by Alois P. Heinz, Dec 04 2020

A242861 Triangle T(n,k) by rows: number of ways k dominoes can be placed on an n X n chessboard, k>=0.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 12, 44, 56, 18, 1, 24, 224, 1044, 2593, 3388, 2150, 552, 36, 1, 40, 686, 6632, 39979, 157000, 407620, 695848, 762180, 510752, 192672, 35104, 2180, 1, 60, 1622, 26172, 281514, 2135356, 11785382, 48145820, 146702793, 333518324, 562203148
Offset: 0

Views

Author

Ralf Stephan, May 24 2014

Keywords

Comments

Also, coefficients of the matching-generating polynomial of the n X n grid graph.
In the n-th row there are floor(n^2/2)+1 values.

Examples

			Triangle starts:
  1
  1
  1  4   2
  1 12  44   56    18
  1 24 224 1044  2593   3388   2150    552     36
  1 40 686 6632 39979 157000 407620 695848 762180 510752 192672 35104 2180
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, l) option remember; local k;
          if n=0 then 1
        elif min(l[])>0 then b(n-1, map(h->h-1, l))
        else for k while l[k]>0 do od; expand(`if`(n>1,
             x*b(n, subsop(k=2, l)), 0) +`if`(k (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$n])):
    seq(T(n), n=0..8); # Alois P. Heinz, Jun 01 2014
  • Mathematica
    b[n_, l_List] := b[n, l] =  Module[{k}, Which[n == 0, 1, Min[l]>0, b[n-1, l-1], True, For[k=1, l[[k]]>0, k++]; Expand[If[n>1, x*b[n, ReplacePart[l, k -> 2]], 0] + If[k 1, k + 1 -> 1}]], 0] + b[n, ReplacePart[l, k -> 1]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, Array[0&, n]]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jun 16 2015, after Alois P. Heinz *)
  • Sage
    def T(n,k):
       G = Graph(graphs.Grid2dGraph(n,n))
       G.relabel()
       mu = G.matching_polynomial()
       return abs(mu[n^2-2*k])

Formula

T(n,1) = A046092(n-1), T(n,2) = A242856(n).
T(n,floor(n^2/2)) = A137308(n), T(2n,2n^2) = A004003(n).
sum(k>=0, T(n,k)) = A210662(n,n) = A028420(n).
T(n,3) = A243206(n), T(n,4) = A243215(n), T(n,5) = A243217(n), T(n,floor(n^2/4)) = A243221(n). - Alois P. Heinz, Jun 01 2014

A286912 Array read by antidiagonals: T(m,n) = number of edge covers in the grid graph P_m X P_n.

Original entry on oeis.org

0, 1, 1, 1, 7, 1, 2, 43, 43, 2, 3, 277, 969, 277, 3, 5, 1777, 23663, 23663, 1777, 5, 8, 11407, 571099, 2180738, 571099, 11407, 8, 13, 73219, 13807469, 198906617, 198906617, 13807469, 73219, 13, 21, 469981, 333735575, 18169793971, 68534828391, 18169793971, 333735575, 469981, 21
Offset: 1

Views

Author

Andrew Howroyd, May 15 2017

Keywords

Examples

			Table starts:
======================================================================
m\n| 1     2        3           4              5                 6
---|------------------------------------------------------------------
1  | 0     1        1           2              3                 5 ...
2  | 1     7       43         277           1777             11407 ...
3  | 1    43      969       23663         571099          13807469 ...
4  | 2   277    23663     2180738      198906617       18169793971 ...
5  | 3  1777   571099   198906617    68534828391    23650967140325 ...
6  | 5 11407 13807469 18169793971 23650967140325 30833670159649637 ...
...
		

Crossrefs

Rows 1-3 are A000045(n-1), A286911, A288031.
Main diagonal is A286913.

Extensions

T(1,1) corrected by Andrew Howroyd, Jun 04 2017

A033507 Number of matchings in graph P_{4} X P_{n}.

Original entry on oeis.org

1, 5, 71, 823, 10012, 120465, 1453535, 17525619, 211351945, 2548684656, 30734932553, 370635224561, 4469527322891, 53898461609719, 649966808093412, 7838012982224913, 94519361817920403, 1139818186429110279, 13745178487929574337, 165754445655292452448
Offset: 0

Views

Author

Keywords

Examples

			a(1) = 5: the graph is
. o-o-o-o
and the five matchings are
. o o o o
. o-o o o
. o o-o o
. o o o-o
. o-o o-o
		

References

  • H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Phys., 26(1985), 157-167.

Crossrefs

Column 4 of triangle A210662. Row sums of A100265.
For perfect matchings see A005178.
Bisection (even part) gives A260034.

Programs

  • GAP
    a:=[1,5,71,823,10012,120465, 1453535,17525619,211351945];; for n in [10..30] do a[n]:=9*a[n-1]+41*a[n-2]-41*a[n-3]-111*a[n-4]+91*a[n-5] +29*a[n-6]-23*a[n-7]-a[n-8]+a[n-9]; od; a; # G. C. Greubel, Oct 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)*(1 -3*x-18*x^2+2*x^3+12*x^4+x^5-x^6)/(1-9*x-41*x^2+41*x^3+111*x^4-91*x^5 -29*x^6+23*x^7+x^8-x^9) )); // G. C. Greubel, Oct 26 2019
    
  • Maple
    a:=array(0..20,[1, 5, 71, 823, 10012, 120465, 1453535, 17525619, 211351945]):
    for j from 9 to 20 do
      a[j]:=9*a[j-1]+41*a[j-2]-41*a[j-3]-111*a[j-4]+91*a[j-5]+
            29*a[j-6]-23*a[j-7]-a[j-8]+a[j-9]
    od:
    convert(a,list);
    # Sergey Perepechko, Apr 24 2013
  • Mathematica
    LinearRecurrence[{9,41,-41,-111,91,29,-23,-1,1},{1,5,71,823,10012,120465, 1453535,17525619,211351945},30] (* Harvey P. Dale, Mar 27 2015 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)*(1 -3*x-18*x^2+2*x^3+12*x^4+x^5-x^6)/(1-9*x-41*x^2+41*x^3+111*x^4-91*x^5 -29*x^6+23*x^7+x^8-x^9)) \\ G. C. Greubel, Oct 26 2019
    
  • Sage
    def A033507_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x)*(1 -3*x-18*x^2+2*x^3+12*x^4+x^5-x^6)/(1-9*x-41*x^2+41*x^3+111*x^4-91*x^5 -29*x^6+23*x^7+x^8-x^9) ).list()
    A033507_list(30) # G. C. Greubel, Oct 26 2019
    

Formula

From Sergey Perepechko, Apr 24 2013: (Start)
a(n) = 9*a(n-1) +41*a(n-2) -41*a(n-3) -111*a(n-4) +91*a(n-5) +29*a(n-6) -23*a(n-7) -a(n-8) +a(n-9).
G.f.: (1-x) * (1 -3*x -18*x^2 +2*x^3 +12*x^4 +x^5 -x^6) / (1 -9*x -41*x^2 +41*x^3 +111*x^4 -91*x^5 -29*x^6 +23*x^7 +x^8 -x^9). (End)

Extensions

Edited by N. J. A. Sloane, Nov 15 2009

A242856 Number of 2-matchings of the n X n grid graph.

Original entry on oeis.org

2, 44, 224, 686, 1622, 3272, 5924, 9914, 15626, 23492, 33992, 47654, 65054, 86816, 113612, 146162, 185234, 231644, 286256, 349982, 423782, 508664, 605684, 715946, 840602, 980852, 1137944, 1313174, 1507886, 1723472, 1961372, 2223074, 2510114, 2824076, 3166592
Offset: 2

Views

Author

Ralf Stephan, May 24 2014

Keywords

Comments

Number of ways two dominoes can be placed on an n X n chessboard.

Crossrefs

Second column of A242861. Cf. A016742, A046092, A054000, A210662.

Programs

  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {2, 44, 224, 686, 1622}, 50] (* Paolo Xausa, May 20 2024 *)
  • PARI
    Vec(-2*x^2*(x^4-7*x^3+12*x^2+17*x+1)/(x-1)^5 + O(x^100)) \\ Colin Barker, Jun 26 2014
  • Sage
    def a(n):
        G = Graph(graphs.Grid2dGraph(n,n))
        G.relabel()
        return G.matching_polynomial()[n^2-4]
    

Formula

a(n) = 2*n^4 - 4*n^3 - 5*n^2 + 13*n - 4.
G.f.: -2*x^2*(x^4-7*x^3+12*x^2+17*x+1) / (x-1)^5. - Colin Barker, Jun 26 2014
a(n + 1) = (1/2)*A046092(n)*(A046092(n) - 1) - A016742(n) - A054000(n). - Nicolas Bělohoubek, May 15 2024
E.g.f.: 4 - 2*x + exp(x)*(2*x^4 + 8*x^3 - 3*x^2 + 6*x - 4). - Stefano Spezia, Jun 04 2024

Extensions

a(7)-a(36) from Alois P. Heinz, Jun 01 2014

A033506 Number of matchings in graph P_{3} X P_{n}.

Original entry on oeis.org

1, 3, 22, 131, 823, 5096, 31687, 196785, 1222550, 7594361, 47177097, 293066688, 1820552297, 11309395995, 70254767718, 436427542283, 2711118571311, 16841658983944, 104621568809247, 649916534985369, 4037327172325542
Offset: 0

Views

Author

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 50, 999.
  • Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University.

Crossrefs

Column 3 of triangle A210662. Row sums of A100245.

Programs

  • GAP
    a:=[1,3,22,131,823,5096];; for n in [7..30] do a[n]:=4*a[n-1] +14*a[n-2]-10*a[n-4]+a[n-6]; od; a; # G. C. Greubel, Oct 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-2*x-x^2)*(1+x-x^2)/((1+x)*(1-5*x-9*x^2+9*x^3+x^4-x^5)) )); // G. C. Greubel, Oct 26 2019
    
  • Maple
    seq(coeff(series((1-2*x-x^2)*(1+x-x^2)/((1+x)*(1-5*x-9*x^2+9*x^3+x^4-x^5 )), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 26 2019
  • Mathematica
    CoefficientList[Series[(1-2x-x^2)(1+x-x^2)/((1+x)(1-5x-9x^2+9x^3+x^4-x^5) ), {x, 0, 30}], x] (* Harvey P. Dale, Dec 05 2014 *)
    LinearRecurrence[{4, 14, 0, -10, 0, 1}, {1, 3, 22, 131, 823, 5096}, 30] (* Harvey P. Dale, Dec 05 2014 *)
    Table[RootSum[-1 +# +9#^2 -9#^3 -5#^4 +#^5 &, 1436541#^n + 3941068#^(n+1) -6086452#^(n+2) -2800519#^(n+3) +591744#^(n+4) &]/10204570 -(-1)^n/5, {n, 20}] (* Eric W. Weisstein, Oct 02 2017 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-2*x-x^2)*(1+x-x^2)/((1+x)*(1-5*x-9*x^2 +9*x^3+x^4-x^5))) \\ G. C. Greubel, Oct 26 2019
    
  • Sage
    def A033506_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-2*x-x^2)*(1+x-x^2)/((1+x)*(1-5*x-9*x^2+9*x^3+x^4-x^5)) ).list()
    A033506_list(30) # G. C. Greubel, Oct 26 2019
    

Formula

G.f.: (1-2*x-x^2)*(1+x-x^2)/((1+x)*(1-5*x-9*x^2+9*x^3+x^4-x^5)). - Sergey Perepechko, Apr 19 2013

A033511 Number of matchings in graph P_{8} X P_{n}.

Original entry on oeis.org

1, 34, 7573, 1222550, 211351945, 36012826776, 6158217253688, 1052091957273408, 179788343101980135, 30721240815429999078, 5249581929453966097649, 897032469743945346623442, 153282416794739031814924079, 26192460807219455656314349664
Offset: 0

Views

Author

Keywords

Crossrefs

Column 8 of triangle A210662.
Bisection (even part) gives A260036.

A033508 Number of matchings in graph P_{5} X P_{n}.

Original entry on oeis.org

1, 8, 228, 5096, 120465, 2810694, 65805403, 1539222016, 36012826776, 842518533590, 19711134149599, 461148537211748, 10788744980331535, 252406631116215534, 5905146419664967132, 138153075553825008696
Offset: 0

Views

Author

Keywords

Comments

These are the row sums of the following triangle of the matchings of P_5 X P_n with k>=0 monomers (A003775 appears in the first column):
1;
0, 3, 0, 4, 0, 1;
8, 0, 56, 0, 94, 0, 56, 0, 13, 0, 1;
0, 106, 0, 757, 0, 1670, 0, 1597, 0, 758, 0, 185, 0, 22, 0, 1;
95, 0, 2111, 0, 12181, 0, 29580, 0, 36771, 0, 25835, 0, 10769, 0, 2696, 0, 395, 0, 31, 0, 1;
0, 2180, 0, 35104, 0, 192672, 0, 510752, 0, 762180, 0, 695848, 0, 407620, 0, 157000, 0, 39979, 0, 6632, 0, 686, 0, 40, 0, 1;
1183, 0, 52614, 0, 611633, 0, 3146447, 0, 8803727, 0, 14957414, 0, 16492039, 0, 12307901, 0, 6380454, 0, 2329148, 0, 600254, 0, 108186, 0, 13295, 0, 1058, 0, 49, 0, 1;
0, 37924, 0, 1054776, 0, 10405842, 0, 51732687, 0, 151233778, 0, 283790459, 0, 361377070, 0, 324069497, 0, 209807278, 0, 99625091, 0, 34985010, 0, 9096697, 0, 1740018, 0, 240905, 0, 23414, 0, 1511, 0, 58, 0, 1;
- R. J. Mathar, May 06 2016

Crossrefs

Column 5 of triangle A210662.

Programs

  • Maple
    # The following g.f. is for the sequence a(0)=1, a(1)=8, a(2)=228, etc.
    Gf:= (1-6*x-113*x^2+88*x^3+1794*x^4-1994*x^5-6956*x^6+7532*x^7+
    11175*x^8-9448*x^9-9255*x^10+4700*x^11+3820*x^12-870*x^13-654*x^14+
    68*x^15+45*x^16-2*x^17-x^18)/(1-14*x-229*x^2+16*x^3+4757*x^4-898*x^5-
    35106*x^6+26564*x^7+74665*x^8-60482*x^9-73623*x^10+50158*x^11+
    38553*x^12-17604*x^13-10366*x^14+2538*x^15+1281*x^16-140*x^17-65*x^18+
    2*x^19+x^20):
    expr:=convert(series(Gf,x,21),polynom):
    seq(coeff(expr,x,j),j=0..20);
    # Sergey Perepechko, Apr 26 2013

Formula

For g.f. see Maple program. - Sergey Perepechko, Apr 26 2013
Showing 1-10 of 16 results. Next