A005178
Number of domino tilings of 4 X (n-1) board.
Original entry on oeis.org
0, 1, 1, 5, 11, 36, 95, 281, 781, 2245, 6336, 18061, 51205, 145601, 413351, 1174500, 3335651, 9475901, 26915305, 76455961, 217172736, 616891945, 1752296281, 4977472781, 14138673395, 40161441636, 114079985111, 324048393905
Offset: 0
For n=2 the graph is
o-o-o-o
and there is one perfect tiling:
o-o o-o
For n=3 the graph is
o-o-o-o
| | | |
o-o-o-o
and there are five perfect tilings:
o o o o
| | | |
o o o o
two like:
o o o-o
| | ...
o o o-o
and this
o-o o-o
.......
o-o o-o
and this
o o-o o
| ... |
o o-o o
a(n+1)=r(n)-r(n-2), r(n)=if n=0 then 1 else sum(sum(binomial(k,j)*sum(binomial(j,i-j)*5^(i-j)*binomial(k-j,n-i-3*(k-j))*(-1)^(n-i-3*(k-j)),i,j,n-k+j),j,0,k),k,1,n), n>1. - _Vladimir Kruchinin_, Sep 08 2010
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics I, p. 292.
- T. D. Noe, Table of n, a(n) for n = 0..200
- Steve Butler, Jason Ekstrand, and Steven Osborne, Counting Tilings by Taking Walks in a Graph, A Project-Based Guide to Undergraduate Research in Mathematics, Birkhäuser, Cham (2020), see page 158.
- Curtis Cooper and Robert E. Kennedy, Problem B-735: Soln 1, Problem B-735: Soln 2, Square Root of a Recurrence, The Fibonacci Quarterly, 32(2):185-186, May 1994, and 32(4):374-375, Aug 1994.
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
- F. Faase, Counting Hamiltonian cycles in product graphs
- F. Faase, Results from the counting program
- Vladimir Victorovich Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
- R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 3.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Simone Rinaldi and D. G. Rogers, Indecomposability: polyominoes and polyomino tilings, The Mathematical Gazette 92.524 (2008): 193-204.
- David Singmaster, Letter to N. J. A. Sloane, Oct 3 1982.
- Thotsaporn "Aek" Thanatipanonda, Statistics of Domino Tilings on a Rectangular Board, Fibonacci Quart. 57 (2019), no. 5, 145-153. See p. 151.
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
- Li Zhou, Northwestern University Math Problem Solving Group, Christopher Carl Heckman and Jerry Minkus, Tiling 4-Rowed Rectangles with Dominoes: 11187, The American Mathematical Monthly 114 (2007): 554-556.
- Index to divisibility sequences
- Index entries for sequences related to dominoes
- Index entries for linear recurrences with constant coefficients, signature (1,5,1,-1).
-
a[0]:=1: a[1]:=1: a[2]:=5: a[3]:=11: for n from 4 to 26 do a[n]:=a[n-1]+5*a[n-2]+a[n-3]-a[n-4] od: seq(a[n],n=0..26); # Emeric Deutsch, Oct 16 2006
A005178:=-(-1-4*z-z**2+z**3)/(1-z-5*z**2-z**3+z**4) # conjectured (correctly) by Simon Plouffe in his 1992 dissertation; gives sequence apart from an initial 1
-
CoefficientList[Series[x(1-x^2)/(1-x-5x^2-x^3+x^4), {x,0,30}], x] (* T. D. Noe, Dec 22 2008 *)
LinearRecurrence[{1, 5, 1, -1}, {0, 1, 1, 5}, 28] (* Robert G. Wilson v, Aug 08 2011 *)
a[0] = 0; a[n_] := Product[2(2+Cos[2j Pi/5]+Cos[2k Pi/n]), {k, 1, (n-1)/2}, {j, 1, 2}] // Round;
Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Aug 20 2018 *)
-
r(n):=if n=0 then 1 else sum(sum(binomial(k,j)*sum(binomial(j,i-j)*5^(i-j)*binomial(k-j,n-i-3*(k-j))*(-1)^(n-i-3*(k-j)),i,j,n-k+j),j,0,k),k,1,n); a(n):=r(n)-r(n-2); /* Vladimir Kruchinin, Sep 08 2010 */
Amalgamated with (former)
A003692, Dec 30 1995
Name changed and 0 prepended by
T. D. Noe, Dec 22 2008
A210662
Triangle read by rows: T(n,k) (1 <= k <= n) = number of monomer-dimer tilings of an n X k board.
Original entry on oeis.org
1, 2, 7, 3, 22, 131, 5, 71, 823, 10012, 8, 228, 5096, 120465, 2810694, 13, 733, 31687, 1453535, 65805403, 2989126727, 21, 2356, 196785, 17525619, 1539222016, 135658637925, 11945257052321, 34, 7573, 1222550, 211351945, 36012826776, 6158217253688, 1052091957273408, 179788343101980135
Offset: 1
Triangle begins:
1
2 7
3 22 131
5 71 823 10012
8 228 5096 120465 2810694
13 733 31687 1453535 65805403 2989126727
21 2356 196785 17525619 1539222016 135658637925 11945257052321
34 7573 1222550 211351945 36012826776 6158217253688 1052091957273408 179788343101980135...
The 7 matchings of the P(2) X P(2)-graph are:
. . .-. . . . . . . . . .-.
| | | |
. . . . . . . . .-. . . .-.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 406-412.
- Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University.
- Alois P. Heinz, Rows n = 1..18, flattened
- Ahrens, J. H. Paving the chessboard. J. Combin. Theory Ser. A 31(1981), no. 3, 277--288. MR0635371 (84d:05009). See Table I. - _N. J. A. Sloane_, Mar 27 2012
- Anzalone, Nick, et al. A Reciprocity Theorem for Monomer-Dimer Coverings. DMCS. 2003. arXiv:math/0304359 [math.CO]
- F. Cazals, Monomer-Dimer Tilings, 1997.
- Steven R. Finch, Two Dimensional Monomer-Dimer Constant [Broken link]
- Steven R. Finch, Two Dimensional Monomer-Dimer Constant [From the Wayback machine]
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 362
- Friedland, Shmuel, and Uri N. Peled, Theory of Computation of Multidimensional Entropy with an Application to the Monomer-Dimer Problem. arXiv:math/0402009 [math.CO]
- H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Physics 26 (1985) 157-167 (eq. (26) and Table V).
- C. Kenyon, D. Randall, and A. Sinclair, Approximating the number of monomer-dimer coverings of a lattice, Journal of Statistical Physics 83 (1996), 637-659.
- David Friedhelm Kind, The Gunport Problem: An Evolutionary Approach, De Montfort University (Leicester, UK, 2020).
- Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.
- R. C. Read, The dimer problem for narrow rectangular arrays: A unified method of solution, and some extensions, Aequationes Mathematicae, 24 (1982), 47-65.
- Ralf Stephan, Animation of all 71 matchings of the P(2) X P(4) graph
- D. Zeilberger, Source
- Index entries for sequences related to dominoes
- Index entries for sequences related to matchings
- Index entries for sequences related to polyominoes
-
from sage.combinat.tiling import TilingSolver, Polyomino
def T(n, k):
p = Polyomino([(0, 0)])
q = Polyomino([(0, 0), (0, 1)])
T = TilingSolver([p, q], box=[n, k], reusable=True)
return T.number_of_solutions()
# Ralf Stephan, May 22 2014
A033506
Number of matchings in graph P_{3} X P_{n}.
Original entry on oeis.org
1, 3, 22, 131, 823, 5096, 31687, 196785, 1222550, 7594361, 47177097, 293066688, 1820552297, 11309395995, 70254767718, 436427542283, 2711118571311, 16841658983944, 104621568809247, 649916534985369, 4037327172325542
Offset: 0
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 50, 999.
- Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Svenja Huntemann, Neil A. McKay, Counting Domineering Positions, arXiv:1909.12419 [math.CO], 2019.
- David Friedhelm Kind, The Gunport Problem: An Evolutionary Approach, De Montfort University (Leicester, UK, 2020).
- Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.
- R. C. Read, The dimer problem for narrow rectangular arrays: A unified method of solution, and some extensions, Aequationes Mathematicae, 24 (1982), 47-65.
- Eric Weisstein's World of Mathematics, Grid Graph
- Eric Weisstein's World of Mathematics, Independent Edge Set
- Eric Weisstein's World of Mathematics, Matching
- Index entries for linear recurrences with constant coefficients, signature (4,14,0,-10,0,1).
-
a:=[1,3,22,131,823,5096];; for n in [7..30] do a[n]:=4*a[n-1] +14*a[n-2]-10*a[n-4]+a[n-6]; od; a; # G. C. Greubel, Oct 26 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-2*x-x^2)*(1+x-x^2)/((1+x)*(1-5*x-9*x^2+9*x^3+x^4-x^5)) )); // G. C. Greubel, Oct 26 2019
-
seq(coeff(series((1-2*x-x^2)*(1+x-x^2)/((1+x)*(1-5*x-9*x^2+9*x^3+x^4-x^5 )), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 26 2019
-
CoefficientList[Series[(1-2x-x^2)(1+x-x^2)/((1+x)(1-5x-9x^2+9x^3+x^4-x^5) ), {x, 0, 30}], x] (* Harvey P. Dale, Dec 05 2014 *)
LinearRecurrence[{4, 14, 0, -10, 0, 1}, {1, 3, 22, 131, 823, 5096}, 30] (* Harvey P. Dale, Dec 05 2014 *)
Table[RootSum[-1 +# +9#^2 -9#^3 -5#^4 +#^5 &, 1436541#^n + 3941068#^(n+1) -6086452#^(n+2) -2800519#^(n+3) +591744#^(n+4) &]/10204570 -(-1)^n/5, {n, 20}] (* Eric W. Weisstein, Oct 02 2017 *)
-
my(x='x+O('x^30)); Vec((1-2*x-x^2)*(1+x-x^2)/((1+x)*(1-5*x-9*x^2 +9*x^3+x^4-x^5))) \\ G. C. Greubel, Oct 26 2019
-
def A033506_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-2*x-x^2)*(1+x-x^2)/((1+x)*(1-5*x-9*x^2+9*x^3+x^4-x^5)) ).list()
A033506_list(30) # G. C. Greubel, Oct 26 2019
A100265
Triangle read by rows: T(n,k) is the number of k-matchings in the P_4 X P_n lattice graph.
Original entry on oeis.org
1, 1, 3, 1, 1, 10, 29, 26, 5, 1, 17, 102, 267, 302, 123, 11, 1, 24, 224, 1044, 2593, 3388, 2150, 552, 36, 1, 31, 395, 2696, 10769, 25835, 36771, 29580, 12181, 2111, 95, 1, 38, 615, 5566, 31106, 111882, 261965, 395184, 372109, 206206, 60730, 7852, 281, 1, 45
Offset: 0
T(2,4)=5 because in the graph P_4 X P_2 with vertices a(0,0), b(0,1), c(0,2),
d(0,3),a'(1,0),b'(1,1),c'(1,2),d'(1,3), we have the following 4-matchings
{aa',bb',cc',dd'},{aa',bb',cd,c'd'},{ab,a'b',cc',dd'},{ab,a'b',cd,c'd'} and {aa',bc,b'c',dd'} (perfect matchings, of course).
Triangle starts:
1;
1, 3, 1;
1, 10, 29, 26, 5;
1, 17, 102, 267, 302, 123, 11;
1, 24, 224, 1044, 2593, 3388, 2150, 552, 36;
- H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Physics 26 (1985) 157-167 (eq. (46) and Table VI).
-
G:= - (1 + 3*z^3*t^4 + 11*z^3*t^5 + 6*z^3*t^6 - 2*z*t - 2*z*t^2 - 3*z^2*t^2 - 9*z^2*t^3 - 3*z^2*t^4 + z^7*t^14 + 3*z^4*t^6 + 5*z^4*t^7 + 2*z^4*t^8 - 3*z^5*t^8 - 3*z^5*t^9 - 5*z^5*t^10 - 2*z^6*t^11)/( - 1 + z + t^18*z^9 + z^3*t^2 + 4*z^3*t^3 - 4*z^3*t^4 - 27*z^3*t^5 - 15*z^3*t^6 + 5*z*t + 3*z*t^2 + 2*z^2*t + 13*z^2*t^2 + 21*z^2*t^3 + 5*z^2*t^4 - 2*z^7*t^11 - 3*z^7*t^12 - 9*z^7*t^13 - 9*z^7*t^14 - 3*z^4*t^4 - 18*z^4*t^5 - 41*z^4*t^6 - 40*z^4*t^7 - 9*z^4*t^8 - z^8*t^14 - z^8*t^16 + z^8*t^15 + 3*z^5*t^6 + 14*z^5*t^7 + 29*z^5*t^8 + 24*z^5*t^9 + 21*z^5*t^10 - z^6*t^8 + 6*z^6*t^10 + 19*z^6*t^11 + 5*z^6*t^12):
Gser:=simplify(series(G,z=0,11)): P[0]:=1: for n from 1 to 8 do P[n]:=coeff(Gser,z^n) od:for n from 0 to 8 do seq(coeff(t*P[n],t^k),k=1..2*n + 1) od; # yields sequence in triangular form
A260034
Number of configurations of the general monomer-dimer model for a 4 X 2n square lattice.
Original entry on oeis.org
1, 71, 10012, 1453535, 211351945, 30734932553, 4469527322891, 649966808093412, 94519361817920403, 13745178487929574337, 1998848998552669987841, 290676277692731170734063, 42270676011348793634137996, 6147079027705968859829472231, 893919476535411566264300633833
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..460
- N. Allegra, Exact solution of the 2d dimer model: Corner free energy, correlation functions and combinatorics, arXiv:1410.4131 [cond-mat.stat-mech], 2014. See Table 5.
- Index entries for linear recurrences with constant coefficients, signature (163, -2641, 12479, -22577, 16705, -5331, 769, -47, 1).
-
LinearRecurrence[{163, -2641, 12479, -22577, 16705, -5331, 769, -47, 1}, {1, 71, 10012, 1453535, 211351945, 30734932553, 4469527322891, 649966808093412, 94519361817920403}, 20] (* Jean-François Alcover, Dec 15 2018 *)
Showing 1-5 of 5 results.
Comments