Sergey Perepechko has authored 25 sequences. Here are the ten most recent ones:
A309117
Number of perfect matchings on a triangular lattice of width 4 and length n.
Original entry on oeis.org
1, 1, 5, 15, 56, 203, 749, 2777, 10293, 38240, 141997, 527593, 1960029, 7282483, 27057400, 100531559, 373522965, 1387822193, 5156442953, 19158736256, 71184183353, 264484479633, 982690786037, 3651182836279, 13565952140920, 50404229548515, 187276671274621
Offset: 0
A309018
Number of perfect matchings in the graph C_{12} X C_n.
Original entry on oeis.org
24200, 7379216, 41934482, 4357599552, 55820091938, 3827188349968, 69206906601800, 3876306765700644, 83804387156528018, 4161957566985310208, 100644292294423977842, 4601436044608986037284, 120511830300023778605000, 5179981855242249681088528, 144148769049390803580105218
Offset: 3
- Seiichi Manyama, Table of n, a(n) for n = 3..500
- S. N. Perepechko, The number of perfect matchings on C_m X C_n graphs, (in Russian), Information Processes, 2016, V. 16, No. 4, pp. 333-361.
- Sergey Perepechko, Generating function in Maple notation.
A308761
Number of perfect matchings in the graph C_{11} X C_{2n}.
Original entry on oeis.org
1956242, 643041038, 294554220578, 152849502772958, 83804387156528018, 47217865780262297342, 26990513247252188990402, 15550772782091243971206638, 8999393061535308152171682002, 5221063878050546380074377019392
Offset: 2
- Seiichi Manyama, Table of n, a(n) for n = 2..361
- S. N. Perepechko, The number of perfect matchings on C_m X C_n graphs, (in Russian), Information Processes, 2016, V. 16, No. 4, pp. 333-361.
- S. N. Perepechko, Counting Near-Perfect Matchings on C_m × C_n Tori of Odd Order in the Maple System, Programming and Computer Software, 45(2019), 65-72.
- Sergey Perepechko, Generating function in Maple notation.
-
default(realprecision, 120);
a(n) = round(sqrt(prod(j=1, n, prod(k=1, 11, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/11)^2)))); \\ Seiichi Manyama, Feb 14 2021
A281583
Number of perfect matchings in the graph C_9 X C_{2n}.
Original entry on oeis.org
140450, 16091936, 2415542018, 400448833106, 69206906601800, 12190695635108354, 2167175327735637122, 387018647188487143424, 69272289588070930561250, 12413316310203106546620386, 2225719417041514241075539592, 399192630631160441128470998546
Offset: 2
- Seiichi Manyama, Table of n, a(n) for n = 2..443
- S. N. Perepechko, The number of perfect matchings on C_m X C_n graphs, (in Russian), Information Processes, 2016, V.16, No.4, pp.333-361.
- Sergey Perepechko, Generating function, in Maple notation.
-
default(realprecision, 120);
a(n) = round(sqrt(prod(j=1, n, prod(k=1, 9, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/9)^2)))); \\ Seiichi Manyama, Feb 14 2021
A281679
Number of perfect matchings in the graph C_10 X C_n.
Original entry on oeis.org
5054, 537636, 2540032, 114557000, 1034315998, 33898728836, 400448833106, 11203604497408, 152849502772958, 3876306765700644, 58099728840105682, 1375359477482867528, 22057225099289357824, 496348449090698237956, 8370856315868909044082, 181385918483215101487880
Offset: 3
- Seiichi Manyama, Table of n, a(n) for n = 3..500
- S. N. Perepechko, The number of perfect matchings on C_m X C_n graphs, (in Russian), Information Processes, 2016, V. 16, No. 4, pp. 333-361.
- Sergey Perepechko, Generating function, in Maple notation.
- Eric Weisstein's World of Mathematics, Independent Edge Set
- Eric Weisstein's World of Mathematics, Matching
- Eric Weisstein's World of Mathematics, Perfect Matching
- Eric Weisstein's World of Mathematics, Torus Grid Graph
A263200
Number of perfect matchings on a Möbius strip of width 3 and length 2n.
Original entry on oeis.org
28, 104, 388, 1448, 5404, 20168, 75268, 280904, 1048348, 3912488, 14601604, 54493928, 203374108, 759002504, 2832635908, 10571541128, 39453528604, 147242573288, 549516764548, 2050824484904, 7653781175068, 28564300215368, 106603419686404, 397849378530248
Offset: 2
- Colin Barker, Table of n, a(n) for n = 2..1000
- W. T. Lu and F. Y. Wu, Close-packed dimers on nonorientable surfaces, Physics Letters A, 293(2002), 235-246.
- S. N. Perepechko, Recurrence relations for the number of perfect matchings on the Mobius strips (in Russian), Proc. of XIX international conference on computational mechanics and modern applied software systems (CMMASS'2015), Alushta, Crimea, 2015, 98-100.
- Sergey Perepechko, Graph view
- G. Tesler, Matchings in graphs on non-orientable surfaces, Journal of Combinatorial Theory B, 78(2000), 198-231.
- Index entries for linear recurrences with constant coefficients, signature (4,-1).
-
I:=[28,104]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 12 2015
-
CoefficientList[Series[4 (7 - 2 x)/(1 - 4 x + x^2), {x, 0, 33}], x] (* Vincenzo Librandi, Oct 12 2015 *)
-
Vec(4*x^2*(7-2*x)/(1-4*x+x^2) + O(x^30)) \\ Altug Alkan, Oct 12 2015
A263201
Number of perfect matchings on a Möbius strip of width 4 and length n.
Original entry on oeis.org
11, 37, 71, 252, 539, 1813, 4271, 13519, 34276, 103803, 276119, 813417, 2226851, 6455052, 17965151, 51604017, 144948419, 414258603, 1169523076, 3333192319, 9436433171, 26853404413, 76139155439, 216490730652, 614339685971, 1745997031837, 4956888901511
Offset: 2
- Colin Barker, Table of n, a(n) for n = 2..1000
- W. T. Lu and F. Y. Wu, Close-packed dimers on nonorientable surfaces, Physics Letters A, 293(2002), 235-246.
- S. N. Perepechko, Recurrence relations for the number of perfect matchings on the Mobius strips (in Russian), Proc. of XIX international conference on computational mechanics and modern applied software systems (CMMASS'2015), Alushta, Crimea, 2015, 98-100.
- Sergey Perepechko, Graph view
- G. Tesler, Matchings in graphs on non-orientable surfaces, Journal of Combinatorial Theory B, 78(2000), 198-231.
- Index entries for linear recurrences with constant coefficients, signature (1,13,-7,-61,12,128,0,-128,-12,61,7,-13,-1,1).
-
CoefficientList[Series[(11 + 26 x - 109 x^2 - 223 x^3 + 294 x^4 + 620 x^5 - 306 x^6 - 764 x^7 + 100 x^8 + 414 x^9 + 5 x^10 - 92 x^11 - 3 x^12 + 7 x^13)/((1 - x) (1 + x) (1 + x - 3 x^2 - x^3 + x^4) (1 - x - 3 x^2 + x^3 + x^4) (1 - x - 5 x^2 - x^3 + x^4)), {x, 0, 33}], x] (* Vincenzo Librandi, Oct 12 2015 *)
-
Vec(z^2*(11 + 26*z - 109*z^2 - 223*z^3 + 294*z^4 + 620*z^5 - 306*z^6 -764*z^7 + 100*z^8 + 414*z^9 + 5*z^10 - 92*z^11 - 3*z^12 + 7*z^13)/((1 - z)*(1 + z)*(1 + z - 3*z^2 - z^3 + z^4)*(1 - z - 3*z^2 + z^3 + z^4)*(1 - z - 5*z^2 - z^3 + z^4)) + O(z^50)) \\ Altug Alkan, Oct 12 2015
A254635
Number of perfect matchings in the P_7 X C_{2n} graph.
Original entry on oeis.org
6272, 179928, 6422528, 248864088, 9973238912, 405583759128, 16603641077888, 681794737794072, 28036464541430912, 1153675328152653912, 47487681076805107712, 1954983080255585201112, 80488830677377147883648, 3313925147228829031300248, 136444682110846678973251712
Offset: 2
A254611
Number of perfect matchings in the P_6 X C_n graph.
Original entry on oeis.org
91, 1681, 2911, 28561, 79808, 591361, 2091817, 13344409, 53924597, 315169009, 1380947751, 7649951296, 35269184041, 188926707649, 899769503723, 4718266032649, 22943942934823, 118691459382721, 584955154102592, 2999832755191441, 14912246613880433, 76049269944443041, 380145205524781061
Offset: 3
A253678
Number of perfect matchings in the graph C_8 X C_n.
Original entry on oeis.org
1058, 39952, 155682, 3113860, 19681538, 311853312, 2415542018, 33898728836, 294554220578, 3827188349968, 35866638601250, 442299574618756, 4365923647238658, 51942700201804032, 531410627302657538, 6169093269471927940, 64681086501382749218, 738453913359765339152, 7872683691901209561122, 88873260229652630182276
Offset: 3
- S. N. Perepechko, Combinatorial properties of dimer problem on tori (in Russian). Mathematical physics and its applications, The fourth int. conf. Samara, 2014, 280-281.
Comments