cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A341741 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards: number of perfect matchings in the graph C_{2n} x C_k.

Original entry on oeis.org

2, 8, 2, 14, 36, 2, 36, 50, 200, 2, 82, 272, 224, 1156, 2, 200, 722, 3108, 1058, 6728, 2, 478, 3108, 9922, 39952, 5054, 39204, 2, 1156, 10082, 90176, 155682, 537636, 24200, 228488, 2, 2786, 39952, 401998, 3113860, 2540032, 7379216, 115934, 1331716, 2
Offset: 1

Views

Author

Seiichi Manyama, Feb 18 2021

Keywords

Comments

Dimer tilings of 2n x k toroidal grid.

Examples

			Square array begins:
  2,     8,    14,      36,       82,        200, ...
  2,    36,    50,     272,      722,       3108, ...
  2,   200,   224,    3108,     9922,      90176, ...
  2,  1156,  1058,   39952,   155682,    3113860, ...
  2,  6728,  5054,  537636,  2540032,  114557000, ...
  2, 39204, 24200, 7379216, 41934482, 4357599552, ...
		

Crossrefs

Columns 1..12 give A007395, A162484(2*n), A231087, A220864(2*n), A231485, A232804(2*n), A230033, A253678(2*n), A281583, A281679(2*n), A308761, A309018(2*n).
T(n,2*n) gives A335586.

Formula

T(n,k) = A341533(n,k)/2 + A341738(n,k) + 2 * ((k+1) mod 2) * A341739(n,ceiling(k/2)).
T(n, 2k) = T(k, 2n).
If k is odd, T(n,k) = A341533(n,k) = 2*A341738(n,k).

Extensions

New name from Andrey Zabolotskiy, Dec 26 2021

A281583 Number of perfect matchings in the graph C_9 X C_{2n}.

Original entry on oeis.org

140450, 16091936, 2415542018, 400448833106, 69206906601800, 12190695635108354, 2167175327735637122, 387018647188487143424, 69272289588070930561250, 12413316310203106546620386, 2225719417041514241075539592, 399192630631160441128470998546
Offset: 2

Views

Author

Sergey Perepechko, Jan 25 2017

Keywords

Comments

For odd values of m the order of recurrence relation for the number of perfect matchings in C_{m} X C_{2n} graph does not exceed 3^floor(m/2).

Crossrefs

Programs

  • PARI
    default(realprecision, 120);
    a(n) = round(sqrt(prod(j=1, n, prod(k=1, 9, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/9)^2)))); \\ Seiichi Manyama, Feb 14 2021

Formula

a(n) = sqrt( Product_{j=1..n} Product_{k=1..9} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/9)^2) ). - Seiichi Manyama, Feb 14 2021

A281679 Number of perfect matchings in the graph C_10 X C_n.

Original entry on oeis.org

5054, 537636, 2540032, 114557000, 1034315998, 33898728836, 400448833106, 11203604497408, 152849502772958, 3876306765700644, 58099728840105682, 1375359477482867528, 22057225099289357824, 496348449090698237956, 8370856315868909044082, 181385918483215101487880
Offset: 3

Views

Author

Sergey Perepechko, Jan 26 2017

Keywords

Comments

For even values of m the order of recurrence relation for the number of perfect matchings in C_m X C_n graph does not exceed (3^delta(m/2) + 2*(3/5)^(1 - delta(m/2)))*5^floor(m/4) + 1. Here delta(k) equals 1 for odd values of k and 0 otherwise. If m=10 the above estimate gives 126 for the order of recurrence relation while the exact value equals 118.

Crossrefs

A335586 Number of domino tilings of a 2n X 2n toroidal grid.

Original entry on oeis.org

1, 8, 272, 90176, 311853312, 11203604497408, 4161957566985310208, 15954943354032349049274368, 630665326543010382995142219988992, 256955886436135671144699761794930161483776
Offset: 0

Views

Author

Drake Thomas, Jan 26 2021

Keywords

Comments

For n > 1, number of perfect matchings of the graph C_2n X C_2n.

Examples

			For n = 1, there are a(1) = 8 tilings (see the Links section for a diagram).
		

Crossrefs

Number of perfect matchings of the graph C_2m X C_n: A162484 (m=1), A220864 (m=2), A232804 (m=3), A253678 (m=4), A281679 (m=5), A309018 (m=6).

Programs

  • PARI
    default(realprecision, 120);
    b(n) = round(prod(j=1, n-1, prod(k=1, n, 4*sin(j*Pi/n)^2+4*sin((2*k-1)*Pi/(2*n))^2)));
    c(n) = round(prod(j=1, n, prod(k=1, n, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/(2*n))^2)));
    a(n) = if(n==0, 1, 4*b(n)+c(n)/2); \\ Seiichi Manyama, Feb 13 2021

Formula

a(n) = 4 * Product_{j=1..n-1} Product_{k=1..n} (4*sin(j*Pi/n)^2 + 4*sin((2*k-1)*Pi/(2*n))^2) + 1/2 * Product_{1<=j,k<=n} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/(2*n))^2) = 4 * A341478(n)^2 + A341479(n)/2 for n > 0. - Seiichi Manyama, Feb 13 2021
a(n) ~ (1 + sqrt(2)) * exp(4*G*n^2/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Feb 14 2021

Extensions

More terms from Seiichi Manyama, Feb 13 2021

A308761 Number of perfect matchings in the graph C_{11} X C_{2n}.

Original entry on oeis.org

1956242, 643041038, 294554220578, 152849502772958, 83804387156528018, 47217865780262297342, 26990513247252188990402, 15550772782091243971206638, 8999393061535308152171682002, 5221063878050546380074377019392
Offset: 2

Views

Author

Sergey Perepechko, Jul 04 2019

Keywords

Comments

This sequence satisfies a recurrence relation of order 243.

Crossrefs

Programs

  • PARI
    default(realprecision, 120);
    a(n) = round(sqrt(prod(j=1, n, prod(k=1, 11, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/11)^2)))); \\ Seiichi Manyama, Feb 14 2021

Formula

a(n) = sqrt( Product_{j=1..n} Product_{k=1..11} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/11)^2) ). - Seiichi Manyama, Feb 14 2021

A309018 Number of perfect matchings in the graph C_{12} X C_n.

Original entry on oeis.org

24200, 7379216, 41934482, 4357599552, 55820091938, 3827188349968, 69206906601800, 3876306765700644, 83804387156528018, 4161957566985310208, 100644292294423977842, 4601436044608986037284, 120511830300023778605000, 5179981855242249681088528, 144148769049390803580105218
Offset: 3

Views

Author

Sergey Perepechko, Jul 06 2019

Keywords

Comments

This sequence satisfies a recurrence relation of order 266.

Crossrefs

A341493 a(n) = ( Product_{j=1..n} Product_{k=1..n+1} (4*sin((2*j-1)*Pi/n)^2 + 4*sin((2*k-1)*Pi/(n+1))^2) )^(1/4).

Original entry on oeis.org

1, 2, 14, 50, 722, 9922, 401998, 19681538, 2415542018, 400448833106, 152849502772958, 83804387156528018, 100644292294423977842, 180483873668860889130642, 686161117968330536875295134, 4001215836806010384390623471618
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2021

Keywords

Comments

Number of perfect matchings in the graph C_n X C_{n+1} for n > 0.

Crossrefs

Programs

  • Mathematica
    Table[Product[4*Sin[(2*j - 1)*Pi/n]^2 + 4*Sin[(2*k - 1)*Pi/(n+1)]^2, {k, 1, n+1}, {j, 1, n}]^(1/4), {n, 0, 15}] // Round (* Vaclav Kotesovec, Feb 14 2021 *)
  • PARI
    default(realprecision, 120);
    a(n) = round(prod(j=1, n, prod(k=1, n+1, 4*sin((2*j-1)*Pi/n)^2+4*sin((2*k-1)*Pi/(n+1))^2))^(1/4));

Formula

a(n) ~ 2^(3/4) * exp(G*n*(n+1)/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Feb 14 2021
Showing 1-7 of 7 results.